Supplementary Material for "Nonparametric Empirical Bayes estimation on heterogeneous data"

This supplement contains additional theoretical results (Sections A and B) and additional numerical results (Section C).

APPENDIX A: EXPRESSIONS FOR COMMON MEMBERS OF THE EXPONENTIAL FAMILY

We observe $\left(x_{1}, \theta_{1}\right), \ldots,\left(x_{n}, \theta_{n}\right)$ with conditional distribution

$$
\begin{equation*}
f_{\theta_{i}}\left(x_{i} \mid \eta_{i}\right)=\exp \left\{\eta_{i} z_{i}-\psi\left(\eta_{i}\right)\right\} h_{\theta_{i}}\left(z_{i}\right), \tag{A.1}
\end{equation*}
$$

where θ_{i} is a known nuisance parameter and η_{i} is an unknown parameter of interest. In addition to the Gaussian distribution, there are several common cases of (A.1).

Binomial:

$$
f_{n_{i}}\left(x_{i} \mid \eta_{i}\right)=\frac{n_{i}!}{x_{i}!\left(n_{i}-x_{i}\right)!} p_{i}^{x_{i}}\left(1-p_{i}\right)^{n_{i}-x_{i}}=\exp \left\{\eta_{i} x_{i}-\psi\left(\eta_{i}\right)\right\} h_{n_{i}}\left(x_{i}\right),
$$

where $\eta_{i}=\log \left(\frac{p_{i}}{1-p_{i}}\right), \theta_{i}=n_{i}, \psi\left(\eta_{i}\right)=n_{i} \log \left(1+e^{\eta_{i}}\right)$, and $h_{n_{i}}\left(x_{i}\right)=$ $\frac{n_{i}!}{x_{i}!\left(n_{i}-x_{i}\right)!}$.

Negative Binomial:

$$
f_{r_{i}}\left(x_{i} \mid \eta_{i}\right)=\frac{\left(x_{i}+r_{i}-1\right)!}{x_{i}!\left(r_{i}-1\right)!} p_{i}^{z_{i}}\left(1-p_{i}\right)^{r_{i}}=\exp \left\{\eta_{i} x_{i}-\psi\left(\eta_{i}\right)\right\} h_{r_{i}}\left(x_{i}\right),
$$

where $\eta_{i}=\log p_{i}, \theta_{i}=r_{i}, \psi\left(\eta_{i}\right)=r_{i} \log \left(1-e^{\eta_{i}}\right)$, and $h_{r_{i}}\left(x_{i}\right)=\frac{\left(x_{i}+r_{i}-1\right)!}{z_{i}!\left(r_{i}-1\right)!}$.

Gamma:

$$
f_{\alpha_{i}}\left(x_{i} \mid \eta_{i}\right)=\frac{1}{\Gamma\left(\alpha_{i}\right)} \beta_{i}^{\alpha_{i}} x_{i}^{\alpha_{i}-1} \exp \left(-\beta_{i} x_{i}\right)=\exp \left\{\eta_{i} x_{i}-\psi\left(\eta_{i}\right)\right\} h_{\alpha_{i}}\left(x_{i}\right),
$$

where $\eta_{i}=-\beta_{i}, \theta_{i}=\alpha_{i}, \psi\left(\eta_{i}\right)=-\alpha_{i} \log \left(-\eta_{i}\right)$, and $h_{\alpha_{i}}\left(x_{i}\right)=\frac{1}{\Gamma\left(\alpha_{i}\right)} x_{i}^{\alpha-1}$.

Beta:

$$
f_{\alpha_{i}}\left(z_{i} \mid \eta_{i}\right)=\frac{1}{B\left(\alpha_{i}, \beta_{i}\right)} x_{i}^{\alpha_{i}}\left(1-x_{i}\right)^{\beta_{i}-1}=\exp \left\{\eta_{i} z_{i}-\psi\left(\eta_{i}\right)\right\} h_{\beta_{i}}\left(z_{i}\right),
$$

where $z_{i}=\log x_{i}, \eta_{i}=\alpha_{i}, \theta_{i}=\beta_{i}, \psi\left(\eta_{i}\right)=\log B\left(\eta_{i}, \beta_{i}\right)$ and $h_{\beta_{i}}\left(z_{i}\right)=$ $\left(1-e^{z_{i}}\right)^{\beta_{i}-1}$.

Hence, we can compute $l_{h, \theta}^{\prime}(z)$ explicitly for these distributions.

- Binomial: $-l_{h, n_{i}}^{\prime}\left(x_{i}\right)=\sum_{k=1}^{x_{i}} \frac{1}{k}+\sum_{k=1}^{n_{i}-x_{i}} \frac{1}{k}-2 \gamma$ where γ is the EulerMascheroni constant
- Negative Binomial: $-l_{h, r_{i}}^{\prime}\left(x_{i}\right)= \begin{cases}\sum_{k=x_{i}+1}^{x_{i}+r_{i}-1} \frac{1}{k} & r_{i}>1 \\ 0 & r_{i}=1\end{cases}$
- Gamma: $-l_{h, \alpha_{i}}^{\prime}\left(x_{i}\right)=\left(1-\alpha_{i}\right) \frac{1}{x_{i}}$
- Beta: $-l_{h, \alpha_{i}}^{\prime}\left(z_{i}\right)=\left(\beta_{i}-1\right) \frac{e^{z_{i}}}{1-e^{z_{i}}}=\left(\beta_{i}-1\right) \frac{x_{i}}{1-x_{i}}$.

Combining these expressions with (2.9) we can express $E_{\theta}(\eta \mid x)$ as follows:

- Binomial: $E_{n_{i}}\left(\left.\log \left(\frac{p_{i}}{1-p_{i}}\right) \right\rvert\, x_{i}\right)=\sum_{k=1}^{x_{i}} \frac{1}{k}+\sum_{k=1}^{n_{i}-x_{i}} \frac{1}{k}-2 \gamma+l_{f, n_{i}}^{\prime}\left(x_{i}\right)$
- Negative Binomial: $E_{r_{i}}\left(\log p_{i} \mid x_{i}\right)=l_{f, r_{i}}^{\prime}\left(x_{i}\right)+ \begin{cases}\sum_{k=x_{i}+1}^{x_{i}+r_{i}-1} \frac{1}{k} & r_{i}>1 \\ 0 & r_{i}=1\end{cases}$
- Gamma: $E_{\alpha_{i}}\left(\beta_{i} \mid x_{i}\right)=\left(\alpha_{i}-1\right) \frac{1}{x_{i}}-l_{f, \alpha_{i}}^{\prime}\left(x_{i}\right)$
- Beta: $E_{\beta_{i}}\left(\alpha_{i} \mid z_{i}\right)=\left(\beta_{i}-1\right) \frac{x_{i}}{1-x_{i}}+l_{f, \beta_{i}}^{\prime}\left(z_{i}\right)$.

APPENDIX B: PROOF OF LEMMAS 2 TO 4

B.1. Proof of Lemma 2. We first argue in Section B.1.1 that it is sufficient to prove the result over the following domain

$$
\begin{equation*}
\mathbb{R}_{x}:=\left\{x: C_{n}-\log n \leq x \leq C_{n}+\log n\right\} . \tag{B.1}
\end{equation*}
$$

This simplification can be applied to the proofs of other lemmas.
B.1.1. Truncating the domain. Our goal is to show that $\left(\hat{\delta}-\delta^{\pi}\right)^{2}$ is negligible on \mathbb{R}_{x}^{C}. Since $|\mu| \leq C_{n}$ by Assumption 1 , the oracle estimator is bounded:

$$
\delta^{\pi}=\mathbb{E}\left(X \mid \mu, \sigma^{2}\right)=\frac{\int \mu \phi_{\sigma}(x-\mu) d G_{\mu}(\mu)}{\int \phi_{\sigma}(x-\mu) d G_{\mu}(\mu)}<C_{n}
$$

Let $C_{n}^{\prime}=C_{n}+\log n$. Consider the truncated NEST estimator $\hat{\delta} \wedge C_{n}^{\prime}$. The two intermediate estimators $\tilde{\delta}$ and $\bar{\delta}$ are truncated correspondingly without altering their notations. Let $\mathbb{1}_{\mathbb{R}_{x}}$ be the indicator function that is 1 on \mathbb{R}_{x} and 0 elsewhere. Our goal is to show that

$$
\begin{equation*}
\iiint_{\mathbb{R}_{\boldsymbol{x}}^{C}}\left(\hat{\delta}-\delta^{\pi}\right)^{2} \phi_{\sigma}(x-\mu) d x d G_{\mu}(\mu) d G_{\sigma}(\sigma)=O\left(n^{-\kappa}\right) \tag{B.2}
\end{equation*}
$$

for some small $\kappa>0$. Note that for all $x \in \mathbb{R}_{x}^{C}$, the normal tail density vanishes exponentially: $\phi_{\sigma}(x-\mu)=O\left(n^{-\epsilon^{\prime}}\right)$ for some $\epsilon^{\prime}>0$. The desired result follows from the fact that $\left(\hat{\delta}-\delta^{\pi}\right)^{2}=o\left(n^{\eta}\right)$ for any $\eta>0$, according to the assumption on C_{n}.
B.1.2. Proof of the lemma. We first apply triangle inequality to obtain

$$
\left(\bar{\delta}-\delta^{\pi}\right)^{2} \leq \sigma^{4}\left\{\frac{f_{\sigma}^{(1)}(x)}{f_{\sigma}(x)}\right\}^{2}\left\{\frac{f_{\sigma}(x)}{\bar{f}_{\sigma}(x)}\right\}^{2}\left[\left\{\frac{\bar{f}_{\sigma}^{(1)}(x)}{f_{\sigma}^{(1)}(x)}-1\right\}^{2}+\left\{\frac{\bar{f}_{\sigma}(x)}{f_{\sigma}(x)}-1\right\}^{2}\right]^{2}
$$

Hence the lemma follows if we can prove the following facts for $x \in \mathbb{R}_{x}$.
(i) $f_{\sigma}^{(1)}(x) / f_{\sigma}(x)=O\left(C_{n}^{\prime}\right)$, where $C_{n}^{\prime}=C_{n}+\log n$.
(ii) $\bar{f}_{\sigma}(x) / f_{\sigma}(x)=1+O\left(n^{-\varepsilon}\right)$ for some $\varepsilon>0$.
(iii) $\bar{f}_{\sigma}^{(1)}(x) / f_{\sigma}^{(1)}(x)=1+O\left(n^{-\varepsilon}\right)$ for some $\varepsilon>0$.

To prove (i), note that $\delta^{\pi}=O\left(C_{n}\right)$ as shown earlier, and $x=O\left(C_{n}^{\prime}\right)$ if $x \in$ \mathbb{R}_{x}. The oracle estimator satisfies $\delta^{\pi}=x+\sigma^{2} f_{\sigma}^{(1)}(x) / f_{\sigma}(x)$. By Assumption 2, G_{σ} has a finite support, so we claim that $f_{\sigma}^{(1)}(x) / f_{\sigma}(x)=O\left(C_{n}\right)$.

Now consider claim (ii). Let $\mathcal{A}_{\mu}:=\{\mu:|\mu-x| \leq \sqrt{\log (n)}\}$. Following similar arguments to the previous sections, we apply the normal tail bounds to claim that $\phi_{\nu \bar{\sigma}}(\mu-x)=O\left\{n^{-1 /\left(2 \sigma^{2}+1\right)}\right\}$. Similar arguments apply to $f_{\sigma}(x)$ when $\mu \in \mathcal{A}_{\mu}$. Therefore

$$
\begin{equation*}
\frac{\bar{f}_{\sigma}(x)}{f_{\sigma}(x)}=\frac{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\nu \bar{\sigma}}(x-\mu) d G_{\mu}(\mu)}{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) d G_{\mu}(\mu)}\left\{1+O\left(n^{-\kappa_{1}}\right)\right\} \tag{B.3}
\end{equation*}
$$

for some $\kappa_{1}>0$. Next, we evaluate the ratio in the range of \mathcal{A}_{μ} :

$$
\begin{equation*}
\frac{\phi_{\nu \bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)}=\frac{\sigma}{(\nu \bar{\sigma})} \exp \left[-\frac{1}{2}(\mu-x)^{2}\left\{\frac{1}{(\nu \bar{\sigma})^{2}}-\frac{1}{\sigma^{2}}\right\}\right]=1+O\left(n^{-\kappa_{2}}\right) \tag{B.4}
\end{equation*}
$$

for some $\kappa_{2}>0$. This result follows from our definition of $\bar{\sigma}$, which is in the range of $\left[\sigma-L_{n}, \sigma+L_{n}\right]$ for some $L_{n} \sim n^{-\eta_{l}}$. Since the result (B.4) holds for all μ in \mathcal{A}_{μ}, we have

$$
\begin{aligned}
\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\bar{\sigma}}(x-\mu) d G_{\mu}(\mu) & =\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) \frac{\phi_{\nu \bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)} d G_{\mu}(\mu) \\
& =\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\bar{\sigma}}(x-\mu) d G_{\mu}(\mu)\left\{1+O\left(n^{-\kappa_{2}}\right)\right\}
\end{aligned}
$$

Together with (B.3), claim (ii) holds true.
To prove claim (iii), we first show that

$$
\begin{aligned}
f_{\sigma}^{(1)}(x) & =\int \phi_{\sigma}(x-\mu) \frac{\mu-x}{\sigma^{2}} d G_{\mu}(\mu) \\
& =\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) \frac{\mu-x}{\sigma^{2}} d G_{\mu}(\mu)\left\{1+O\left(n^{-\kappa_{2}}\right)\right\}
\end{aligned}
$$

for some $\kappa>0$. The above claim holds true by using similar arguments for normal tails (as the term $(x-\mu)$ essentially has no impact on the rate). We can likewise argue that

$$
\begin{aligned}
\bar{f}_{\sigma}^{(1)}(x) & =\int_{\mathcal{A}_{\mu}} \frac{\sigma^{2}}{(\nu \bar{\sigma})^{2}} \frac{\phi_{\nu \bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)} \phi_{\sigma}(\mu-x) \frac{\mu-x}{\sigma^{2}} d G_{\mu}(\mu) \\
& =f_{\sigma}^{(1)}(x)\left\{1+O\left(n^{-\varepsilon}\right)\right\}
\end{aligned}
$$

for some $\epsilon>0$. This proves (iii) and completes the proof of the lemma. Note that the proof is done without using the truncated version of $\bar{\delta}$. Since the truncation will always reduce the MSE, the result holds for the truncated $\bar{\delta}$ automatically.
B.2. Proof of Lemma 3. It is sufficient to prove the result over \mathbb{R}_{x} defined in (B.1). Begin by defining $R_{1}=\tilde{f}_{\sigma}^{(1)}(x)-\bar{f}_{\sigma}^{(1)}(x)$ and $R_{2}=\tilde{f}_{\sigma}(x)-$ $\bar{f}_{\sigma}(x)$. Then we can represent the squared difference as

$$
\begin{equation*}
(\tilde{\delta}-\bar{\delta})^{2}=O\left(\left\{\frac{R_{1}}{\bar{f}_{\sigma}(x)+R_{2}}\right\}^{2}+\left[\frac{R_{2} \bar{f}_{\sigma}^{(1)}(x)}{\bar{f}_{\sigma}(x)\left\{\bar{f}_{\sigma}(x)+R_{2}\right\}}\right]^{2}\right) \tag{B.5}
\end{equation*}
$$

Consider L_{n} defined in the previous section. We first study the asymptotic behavior of R_{2}.

$$
\begin{equation*}
R_{2}=\sum_{\sigma_{j} \in \mathcal{A}_{\sigma}} w_{j}\left\{f_{\sigma_{j}}(x)-f_{\nu \bar{\sigma}}(x)\right\}+K_{n}(\sigma), \tag{B.6}
\end{equation*}
$$

where the last term can be calculated as

$$
K_{n}(\sigma)=\sum_{\sigma_{j} \in \mathcal{A}_{\sigma}^{C}} w_{j}\left\{f_{\sigma_{j}}(x)-f_{\nu \bar{\sigma}}(x)\right\}=O\left(\sum_{\sigma_{j} \in \mathcal{A}_{\sigma}^{C}} w_{j}\right) .
$$

The last equation holds since both $f_{\sigma_{j}}(x)$ and $f_{\nu \bar{\sigma}}(x)$ are bounded according to our assumption $\sigma_{l}^{2} \leq \sigma_{j}^{2} \leq \sigma_{u}^{2}$ for all j. Consider $\mathcal{A}_{\mu}:=\{\mu:|\mu-x| \leq \sqrt{\log (n)}\}$. We have

$$
\frac{f_{\nu \bar{\sigma}}(x)}{f_{\sigma_{j}}(x)}=\frac{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\nu \bar{\sigma}}(x-\mu) d G_{\mu}(\mu)}{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma_{j}}(x-\mu) d G_{\mu}(\mu)}\left\{1+O\left(n^{-\kappa_{1}}\right)\right\}
$$

for some $\kappa_{1}>0$, and in the range of $\mu \in \mathcal{A}_{\mu}$, we have

$$
\phi_{\nu \bar{\sigma}}(\mu-x) / \phi_{\sigma}(\mu-x)=1+O\left(n^{-\kappa_{2}}\right)
$$

for some $\kappa_{2}>0$ and all j such that $\sigma_{j} \in \mathcal{A}_{\sigma}$. We conclude that the first term in (B.6) is $O\left(n^{-\kappa}\right)$ for some $\kappa>0$ since $f_{\sigma_{j}}(x)$ is bounded and $\sum_{j \in \mathcal{N}_{\sigma}} w_{j} \leq 1$.

Now we focus on the asymptotic behavior of $\sum_{\sigma_{j} \in A_{\sigma}^{C}} \omega_{\sigma_{j}}(\sigma)$. Let K_{1} be the event that

$$
n^{-1} \sum_{j=1}^{n} \phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)<\frac{1}{2}\left\{g_{\sigma} * \phi_{h_{\sigma}}\right\}(\sigma)
$$

and K_{2} the event that

$$
n^{-1} \sum_{j=1}^{n} \mathbb{1}_{\left\{\sigma_{j} \in A_{\sigma}^{C}\right\}} \phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)>2 \int_{A_{\sigma}^{C}} g_{\sigma}(y) \phi(y-\sigma) d y .
$$

Let $Y_{j}=\phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)$. Then for $a_{j} \leq Y_{j} \leq b_{j}$, we use Hoeffding's inequality

$$
\mathbb{P}(|\bar{Y}-\mathbb{E}(\bar{Y})| \geq t) \leq 2 \exp \left\{-\frac{2 n^{2} t^{2}}{\sum_{j=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

Taking $t=\frac{1}{2} \mathbb{E}\left(Y_{i}\right)$, we have

$$
\mathbb{P}\left(K_{1}\right) \leq 2 \exp \left\{-\frac{(1 / 2) n^{2}\left\{\mathbb{E}\left(Y_{i}\right)\right\}^{2}}{n \cdot O\left(h_{\sigma}^{-1}\right)}\right\}=O\left(n^{-\epsilon}\right)
$$

for some $\epsilon>0$. Similarly we can show that $\mathbb{P}\left(K_{2}\right)=O\left(n^{-\epsilon}\right)$ for some $\epsilon>0$. Moreover, on the event $K=K_{1}^{C} \cap K_{2}^{C}$, we have

$$
\sum_{\sigma_{j} \in A_{\sigma}^{C}} \omega_{\sigma_{j}}(\sigma) \leq \frac{4 \int_{A_{\sigma}^{C}} g_{\sigma}(y) \phi(y-\sigma) d y}{\left\{g_{\sigma} * \phi_{h_{\sigma}}\right\}(\sigma)}=O\left(n^{-\epsilon}\right)
$$

for some $\epsilon>0$. We use the same ϵ in the previous arguments, which can be achieved easily by appropriate adjustments (taking the smallest). Previously we have shown that the first term in (B.6) is $O\left(n^{-\epsilon}\right)$. Hence on event K, $R_{2}=O\left(n^{-\kappa}\right)$ for some $\kappa>0$.

Now consider the domain \mathbb{R}_{x}. Define $\mathbb{S}_{x}:=\left\{x: \bar{f}_{\sigma}(x)>n^{-\kappa^{\prime}}\right\}$, where $0<\kappa^{\prime}<\kappa$. On $\mathbb{R}_{x} \cap \mathbb{S}_{x}^{C}$, we have

$$
\begin{equation*}
\iint_{\mathbb{R}_{x} \cap \mathbb{S}_{x}^{C}}(\tilde{\delta}-\bar{\delta})^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)=O\left\{C_{n}^{\prime 2} \cdot \mathbb{P}\left(\mathbb{R}_{x} \cap \mathbb{S}_{x}^{C}\right)\right\}=O\left(n^{-\kappa}\right) \tag{B.7}
\end{equation*}
$$

for some $\kappa>0$. The previous claim holds true since the length of \mathbb{R}_{x} is bounded by C_{n}^{\prime}, and both $\tilde{\delta}$ and $\bar{\delta}$ are truncated by C_{n}^{\prime}.

Now we only need to prove the result for the region $\mathbb{R}_{x} \cap \mathbb{S}_{x}$. On event K, we have

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\sigma}^{2}}\left(\mathbb{1}_{K} \cdot \iint_{\mathbb{R}_{x} \cap \mathbb{S}_{x}}\left[\frac{R_{2} \bar{f}_{\sigma}^{(1)}(x)}{\bar{f}_{\sigma}(x)\left\{\bar{f}_{\sigma}(x)+R_{2}\right\}}\right]^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)\right) \\
= & O\left(C_{n}^{\prime 2}\right) O\left(n^{-\left(\kappa-\kappa^{\prime}\right)}\right),
\end{aligned}
$$

which is $O\left(n^{-\eta}\right)$ for some $\eta>0$. On event K^{C},

$$
\mathbb{E}_{\boldsymbol{\sigma}^{2}}\left(\mathbb{1}_{K^{C}} \cdot \iint_{\mathbb{R}_{x} \cap \mathbb{S}_{x}}(\tilde{\delta}-\bar{\delta})^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)\right)=O\left(C_{n}^{\prime 2}\right) O\left(n^{-\epsilon}\right)
$$

which is also $O\left(n^{-\eta}\right)$. Hence the risk regarding the second term of (B.5) is vanishingly small. Similarly, we can show that the first term satisfies

$$
\mathbb{E}_{\boldsymbol{\sigma}^{2}}\left(\iint_{\mathbb{R}_{x} \cap \mathbb{S}_{x}}\left\{\frac{R_{1}}{\bar{f}_{\sigma}(x)+R_{2}}\right\}^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)\right)=O\left(n^{-\eta}\right)
$$

Together with (B.7), we establish the desired result.
B.3. Proof of Lemma 4. Let $S_{1}=\hat{f}_{\sigma}^{(1)}(x)-\tilde{f}_{\sigma}^{(1)}(x)$ and $S_{2}=\hat{f}_{\sigma}(x)-$ $\tilde{f}_{\sigma}(x)$. Then

$$
\begin{equation*}
(\tilde{\delta}-\hat{\delta})^{2} \leq 2 \sigma^{4}\left[\left\{\frac{\tilde{f}_{\sigma}^{(1)}(x)}{\tilde{f}_{\sigma}(x)}\right\}^{2}\left\{\frac{S_{2}}{S_{2}+\tilde{f}_{\sigma}(x)}\right\}^{2}+\left\{\frac{S_{1}}{S_{2}+\tilde{f}_{\sigma}(x)}\right\}^{2}\right] \tag{B.8}
\end{equation*}
$$

According to the definition of $\tilde{f}_{\sigma}(x)$ [cf. equation (6.2)], we have $\mathbb{E}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{2}\right)=$ 0 . By doing differentiation on both sides we further have $\mathbb{E}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{1}\right)=0$.

A key step in our analysis is to study the variance of S_{2}. We aim to show that

$$
\begin{equation*}
\mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu}, \sigma^{2}}\left(S_{2}\right)=O\left(n^{-1} h_{\sigma}^{-1} h_{x}^{-1}\right) . \tag{B.9}
\end{equation*}
$$

To see this, first note that

$$
\begin{aligned}
& \mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{2}\right)=\sum_{j=1}^{n} w_{j}^{2} \mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left\{\phi_{h_{x j}}\left(x-X_{j}\right)\right\}, \text { where } \\
& \mathbb{V}\left\{\phi_{h_{x j}}\left(x-X_{j}\right)\right\} \\
= & \int\left\{\phi_{h_{x j}}(x-y)\right\}^{2}\left\{g_{\mu} * \phi_{\sigma_{j}}\right\}(y) d y-\left\{\int \phi_{h_{x j}}(x-y)\left\{g_{\mu} * \phi_{\sigma_{j}}\right\}(y) d y\right\}^{2} \\
= & \frac{1}{h_{x} \sigma_{j}^{2}} \int \phi^{2}(z) g_{\mu} * \phi\left(x+h_{x} \sigma_{j} z\right) d z-\left\{\frac{1}{\sigma_{j}} \int \phi(z) g_{\mu} * \phi_{\sigma_{j}}\left(x+h_{x} \sigma_{j} z\right) d z\right\}^{2} \\
= & \frac{1}{h_{x} \sigma_{j}^{2}}\left\{\int \phi^{2}(z) d z\right\} f_{\sigma_{j}}(x)\{1+o(1)\}-\left\{\frac{1}{\sigma_{j}} f_{\sigma_{j}}(x)\right\}^{2}\{1+o(1)\} \\
= & O\left(h_{x}^{-1}\right) .
\end{aligned}
$$

Next we shall show that

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{\sigma}^{2}}\left\{\sum_{j=1}^{n} w_{j}^{2}\right\}=O\left(n^{-1} h_{\sigma}^{-1}\right) \tag{B.10}
\end{equation*}
$$

Observe that $\phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)=O\left(h_{\sigma}^{-1}\right)$ for all j. Therefore we have

$$
\sum_{j=1}^{n} \phi_{h_{\sigma}}^{2}\left(\sigma_{j}-\sigma\right)=O\left(h_{\sigma}^{-1}\right) \sum_{j=1}^{n} \phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right),
$$

which further implies that

$$
\sum_{j=1}^{n} w_{j}^{2}=\frac{\sum_{j=1}^{n} \phi_{h_{\sigma}}^{2}\left(\sigma_{j}-\sigma\right)}{\left\{\sum_{j=1}^{n} \phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)\right\}^{2}}=\frac{O\left(n^{-1} h_{\sigma}^{-1}\right)}{n^{-1} \sum_{j=1}^{n} \phi_{h_{\sigma}}\left(\sigma_{j}-\sigma\right)} .
$$

Let $Y_{j}=\phi_{h_{\sigma}}\left(\phi_{i}-\phi\right)$ and $\bar{Y}=n^{-1} \sum_{j=1}^{n} Y_{i}$. Then $0 \leq Y_{j} \leq\left(\sqrt{2 \pi} h_{\sigma}\right)^{-1}$ and

$$
\mathbb{E}\left(Y_{j}\right)=\left\{g_{\sigma} * \phi_{h_{\sigma}}\right\}(\sigma)=g_{\sigma}(\sigma)+O\left(h_{\sigma}^{2}\right)
$$

Let E_{1} be the event such that $\bar{Y}<\frac{1}{2} E(\bar{Y})$. We apply Hoeffding's inequality to obtain

$$
\begin{aligned}
\mathbb{P}\left\{\bar{Y}<\frac{1}{2} E(\bar{Y})\right\} & \leq \mathbb{P}\left\{|\bar{Y}-E(\bar{Y})| \geq \frac{1}{2} E(\bar{Y})\right\} \\
& \leq 2 \exp \left\{-\frac{2 n^{2} g_{\sigma} * \phi_{h_{\sigma}}(\sigma)}{n(2 \pi)^{-1} h_{\sigma}^{-2}}\right\} \\
& \leq 2 \exp \left(C n h_{\sigma}^{2}\right)=O\left(n^{-1}\right)
\end{aligned}
$$

Note that $\sum_{j=1}^{n} w_{j}^{2} \leq \sum_{j=1}^{n} w_{j}=1$. We have

$$
\begin{aligned}
\mathbb{E}\left(\sum_{j=1}^{n} w_{j}^{2}\right) & =\mathbb{E}\left(\sum_{j=1}^{n} w_{j}^{2} \mathbb{1}_{E}\right)+\mathbb{E}\left(\sum_{j=1}^{n} w_{j}^{2} \mathbb{1}_{E}^{C}\right) \\
& =O\left(n^{-1} h_{\sigma}^{-1}\right)+O\left(n^{-1}\right) \\
& =O\left(n^{-1} h_{\sigma}^{-1}\right)
\end{aligned}
$$

proving (B.10). Next, consider the variance decomposition

$$
\mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}}\left(S_{2}\right)=\mathbb{V}_{\boldsymbol{\sigma}^{2}}\left\{\mathbb{E}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{2}\right)\right\}+\mathbb{E}_{\boldsymbol{\sigma}^{2}}\left\{\mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{2}\right)\right\}
$$

The first term is zero, and the second term is given by

$$
\mathbb{E}_{\boldsymbol{\sigma}^{2}}\left\{\mathbb{V}_{\boldsymbol{X}, \boldsymbol{\mu} \mid \boldsymbol{\sigma}^{2}}\left(S_{2}\right)\right\}=O\left(h_{x}^{-1}\right) \mathbb{E}\left(\sum_{j=1}^{n} w_{j}^{2}\right)=O\left(n^{-1} h_{\sigma}^{-1} h_{x}^{-1}\right)
$$

We simplify the notation and denote the variance of S_{2} by $\mathbb{V}\left(S_{2}\right)$ directly. Therefore $\mathbb{V}\left(S_{2}\right)=O\left(n^{-\epsilon}\right)$ for some $\epsilon>0$. Consider the following space $\mathbb{Q}_{x}=\left\{x: \tilde{f}_{\sigma}(x)>n^{-\epsilon^{\prime}}\right\}$, where $2 \epsilon^{\prime}<\epsilon$. In the proof of the previous lemmas, we showed that on \mathbb{R}_{x},

$$
\tilde{f}_{\sigma}(x)=f_{\sigma}(x)\left\{1+O\left(n^{-\epsilon}\right)\right\}+K_{n}
$$

where K_{n} is a bounded random variable due to the variability of σ_{j}^{2}, and $E_{\boldsymbol{\sigma}^{2}}\left(K_{n}\right)=O\left(n^{-\varepsilon}\right)$ for some $\varepsilon>0$. Next we show it is sufficient to only consider \mathbb{Q}_{x}. To see this, note that

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\sigma}^{2}}\left(\iint_{\mathbb{R}_{x} \cap \mathbb{Q}_{x}^{C}}(\tilde{\delta}-\bar{\delta})^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)\right) \\
= & \mathbb{E}_{\boldsymbol{\sigma}^{2}}\left(\iint_{\mathbb{R}_{x} \cap \mathbb{Q}_{x}^{C}}(\tilde{\delta}-\bar{\delta})^{2}\left[\tilde{f}_{\sigma}(x)\left\{1+O\left(n^{-\epsilon}\right)\right\}+K_{n}\right] d x d G_{\sigma}(\sigma)\right) \\
= & O\left(C_{n}^{\prime 3}\right)\left\{O\left(n^{-\epsilon^{\prime}}\right)+O\left(n^{-\epsilon^{\prime}-\epsilon}\right)+O\left(n^{-1 / 2}\right)\right\},
\end{aligned}
$$

which is also $O\left(n^{-\eta}\right)$ for some $\eta>0$. Let

$$
Y_{j}=w_{j} \phi_{h_{x j}}\left(x-X_{j}\right)-w_{j}\left\{g_{\mu} * \phi_{\nu \sigma_{j}}\right\}(x)
$$

and $\bar{Y}=n^{-1} \sum_{j=1}^{n} Y_{j}$. Then $\mathbb{E}\left(Y_{j}\right)=0, S_{2}=\sum_{j=1}^{n} Y_{j}$, and $0 \leq Y_{j} \leq D_{n}$, where $D_{n} \sim h_{x}^{-1}$. Let E_{2} be the event such that $S_{2}<-\frac{1}{2} \tilde{f}_{\sigma}(x)$. Then by applying Hoeffding's inequality,

$$
\begin{aligned}
\mathbb{P}\left(E_{2}\right) & \leq \mathbb{P}\left\{|\bar{Y}-E(\bar{Y})| \geq \frac{1}{2} \tilde{f}_{\sigma}(x)\right\} \\
& \leq 2 \exp \left\{-\frac{2 n^{2}\left\{\frac{1}{2} \tilde{f}_{\sigma}(x)\right\}^{2}}{n D_{n}^{2}}\right\}=O\left(n^{-\epsilon}\right)
\end{aligned}
$$

for some $\epsilon>0$. Note that on event E_{2}, we have

$$
\mathbb{E}_{\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}}\left\{(\hat{\delta}-\tilde{\delta})^{2} \mathbb{1}_{E_{2}}\right\}=O\left(C_{n}^{2}\right) O\left(n^{-\epsilon}\right)=o(1)
$$

Therefore, we only need to focus on the event E_{2}^{C}, on which we have

$$
\tilde{f}_{\sigma}(x)+S_{2} \geq \frac{1}{2} \tilde{f}_{\sigma}(x)
$$

It follows that on E_{2}^{C}, we have

$$
\left\{S_{2} /\left(\tilde{f}_{\sigma}(x)+S_{2}\right)\right\}^{2} \leq 4 S_{2}^{2} /\left\{\tilde{f}_{\sigma}(x)\right\}^{2}
$$

Therefore the first term on the right of (B.8) can be controlled as

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{X}, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}}\left(\mathbb{1}_{E_{2}^{C}} \cdot \iint_{\mathbb{R}_{x} \cap \mathbb{Q}_{x}}\left\{\frac{\tilde{f}_{\sigma}^{(1)}(x)}{\tilde{f}_{\sigma}(x)}\right\}^{2}\left\{\frac{S_{2}}{S_{2}+\tilde{f}_{\sigma}(x)}\right\}^{2} f_{\sigma}(x) d x d G_{\sigma}(\sigma)\right) \\
= & O\left(C_{n}^{\prime 2}\right) O\left(n^{-\left(\epsilon-2 \epsilon^{\prime}\right)}\right)=O\left(n^{-\eta}\right)
\end{aligned}
$$

for some $\eta>0$. Hence we show that the first term of (B.8) is vanishingly small.

For the second term in (B.8), we need to evaluate the variance term of S_{1}, which can be similarly shown to be of order $O\left(n^{-\eta}\right)$ for some $\eta>0$. Following similar arguments, we can prove that the expectation of the second term in (B.8) is also vanishingly small, establishing the desired result.

Table 5
Proportion of large schools. Bolded terms represent best performances.

Method	$2002-$	$2003-$	$2004-$	$2005-$	$2006-$	$2007-$	$2008-$
	2004	2005	2006	2007	2008	2009	2010
Naive	0.10	0.11	0.12	0.12	0.12	0.14	0.16
NEST	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 9}$	$\mathbf{0 . 2 6}$	$\mathbf{0 . 2 6}$.29	$\mathbf{0 . 2 5}$	$\mathbf{. 2 4}$
TF	0.13	0.16	0.15	0.18	0.19	0.24	0.29
Scaled	0.11	0.12	0.12	0.12	0.12	0.17	0.18
2 Group	0.13	0.15	0.15	0.18	0.18	$\mathbf{0 . 2 5}$	0.29
3 Group	0.13	0.15	0.15	0.16	0.18	0.22	$\mathbf{0 . 2 6}$
4 Group	0.13	0.15	0.15	0.17	0.18	$\mathbf{0 . 2 5}$	0.27
5 Group	0.13	0.15	0.15	0.17	0.17	0.26	0.29
Group L	0.13	0.16	0.17	0.18	$\mathbf{0 . 2 4}$	0.29	0.28
SURE-M	0.16	0.17	0.19	0.21	$\mathbf{0 . 2 4}$	0.34	0.28
SURE-SG	0.16	0.17	0.18	0.21	0.22	0.32	$\mathbf{0 . 2 6}$

APPENDIX C: TABLE OF LARGE SCHOOL PROPORTIONS

Table 5 shows three-year windows for the proportion of large schools selected into the 100 schools by each method. The three-year windows range from 2002-2004 to 2008-2010. NEST is among the closest to giving large schools 25% representation for 6 of 7 years.

401W Bridge Hall
Department of Data Sciences and Operations
Marshall School of Business
University of Southern California
Los Angeles, CA 90089
E-MAIL: luella.fu.2017@marshall.usc.edu gareth@marshall.usc.edu
wenguans@marshall.usc.edu

