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Supplementary Material for “Nonparametric

Empirical Bayes estimation on heterogeneous data”

This supplement contains additional theoretical results (Sections A and
B) and additional numerical results (Section C).

APPENDIX A: EXPRESSIONS FOR COMMON MEMBERS OF THE
EXPONENTIAL FAMILY

We observe (x1, θ1), . . . , (xn, θn) with conditional distribution

(A.1) fθi(xi|ηi) = exp {ηizi − ψ(ηi)}hθi(zi),

where θi is a known nuisance parameter and ηi is an unknown parameter of
interest. In addition to the Gaussian distribution, there are several common
cases of (A.1).

Binomial:

fni(xi|ηi) =
ni!

xi!(ni − xi)!
pxi
i (1− pi)

ni−xi = exp {ηixi − ψ(ηi)}hni(xi),

where ηi = log
(

pi
1−pi

)

, θi = ni,ψ(ηi) = ni log (1 + eηi), and hni(xi) =
ni!

xi!(ni−xi)!
.

Negative Binomial:

fri(xi|ηi) =
(xi + ri − 1)!

xi!(ri − 1)!
pzii (1− pi)

ri = exp {ηixi − ψ(ηi)}hri(xi),

where ηi = log pi, θi = ri,ψ(ηi) = ri log (1− eηi), and hri(xi) =
(xi+ri−1)!
zi!(ri−1)! .

Gamma:

fαi(xi|ηi) =
1

Γ(αi)
βαi
i xαi−1

i exp(−βixi) = exp {ηixi − ψ(ηi)}hαi(xi),

where ηi = −βi, θi = αi,ψ(ηi) = −αi log(−ηi), and hαi(xi) =
1

Γ(αi)
xα−1
i .
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Beta:

fαi(zi|ηi) =
1

B(αi,βi)
xαi
i (1− xi)

βi−1 = exp {ηizi − ψ(ηi)}hβi(zi),

where zi = log xi, ηi = αi, θi = βi,ψ(ηi) = logB(ηi,βi) and hβi(zi) =
(1− ezi)βi−1.

Hence, we can compute l′h,θ(z) explicitly for these distributions.

• Binomial: −l′h,ni
(xi) =

∑xi
k=1

1
k +

∑ni−xi
k=1

1
k − 2γ where γ is the Euler-

Mascheroni constant

• Negative Binomial: −l′h,ri(xi) =

{

∑xi+ri−1
k=xi+1

1
k ri > 1

0 ri = 1

• Gamma: −l′h,αi
(xi) = (1− αi)

1
xi

• Beta: −l′h,αi
(zi) = (βi − 1) ezi

1−ezi = (βi − 1) xi
1−xi

.

Combining these expressions with (2.9) we can express Eθ(η|x) as follows:

• Binomial: Eni

(

log( pi
1−pi

)|xi
)

=
∑xi

k=1
1
k +

∑ni−xi
k=1

1
k − 2γ + l′f,ni

(xi)

• Negative Binomial: Eri(log pi|xi) = l′f,ri(xi) +

{

∑xi+ri−1
k=xi+1

1
k ri > 1

0 ri = 1

• Gamma: Eαi(βi|xi) = (αi − 1) 1
xi

− l′f,αi
(xi)

• Beta: Eβi(αi|zi) = (βi − 1) xi
1−xi

+ l′f,βi
(zi).

APPENDIX B: PROOF OF LEMMAS 2 TO 4

B.1. Proof of Lemma 2. We first argue in Section B.1.1 that it is
sufficient to prove the result over the following domain

Rx := {x : Cn − log n ≤ x ≤ Cn + logn} .(B.1)

This simplification can be applied to the proofs of other lemmas.
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B.1.1. Truncating the domain. Our goal is to show that (δ̂ − δπ)2 is
negligible on RC

x . Since |µ| ≤ Cn by Assumption 1, the oracle estimator is
bounded:

δπ = E(X|µ,σ2) =
∫

µφσ(x− µ)dGµ(µ)
∫

φσ(x− µ)dGµ(µ)
< Cn.

Let C ′
n = Cn + log n. Consider the truncated NEST estimator δ̂ ∧ C ′

n. The
two intermediate estimators δ̃ and δ̄ are truncated correspondingly without
altering their notations. Let Rx be the indicator function that is 1 on Rx

and 0 elsewhere. Our goal is to show that

(B.2)

∫ ∫ ∫

RC
x

(δ̂ − δπ)2φσ(x− µ)dxdGµ(µ)dGσ(σ) = O(n−κ)

for some small κ > 0. Note that for all x ∈ RC
x , the normal tail density

vanishes exponentially: φσ(x − µ) = O(n−ϵ′) for some ϵ′ > 0. The desired
result follows from the fact that (δ̂ − δπ)2 = o(nη) for any η > 0, according
to the assumption on Cn.

B.1.2. Proof of the lemma. We first apply triangle inequality to obtain

(δ̄ − δπ)2 ≤ σ4
{

f (1)
σ (x)

fσ(x)

}2
{

fσ(x)

f̄σ(x)

}2
⎡

⎣

{

f̄ (1)
σ (x)

f (1)
σ (x)

− 1

}2

+

{

f̄σ(x)

fσ(x)
− 1

}2
⎤

⎦

2

.

Hence the lemma follows if we can prove the following facts for x ∈ Rx.

(i) f (1)
σ (x)/fσ(x) = O(C ′

n), where C ′
n = Cn + log n.

(ii) f̄σ(x)/fσ(x) = 1 +O(n−ε) for some ε > 0.

(iii) f̄ (1)
σ (x)/f (1)

σ (x) = 1 +O(n−ε) for some ε > 0.

To prove (i), note that δπ = O(Cn) as shown earlier, and x = O(C ′
n) if x ∈

x. The oracle estimator satisfies δπ = x+σ2f (1)
σ (x)/fσ(x). By Assumption

2, Gσ has a finite support, so we claim that f (1)
σ (x)/fσ(x) = O(Cn).

Now consider claim (ii). Let Aµ :=
{

µ : |µ− x| ≤
√

log(n)
}

. Following

similar arguments to the previous sections, we apply the normal tail bounds
to claim that φνσ̄(µ − x) = O{n−1/(2σ2+1)}. Similar arguments apply to
fσ(x) when µ ∈ Aµ. Therefore

(B.3)
f̄σ(x)

fσ(x)
=

∫

µ∈Aµ
φνσ̄(x− µ)dGµ(µ)

∫

µ∈Aµ
φσ(x− µ)dGµ(µ)

{

1 +O(n−κ1)
}
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for some κ1 > 0. Next, we evaluate the ratio in the range of Aµ:

(B.4)
φνσ̄(µ− x)

φσ(µ− x)
=

σ

(νσ̄)
exp

[

−
1

2
(µ− x)2

{

1

(νσ̄)2
−

1

σ2

}]

= 1+O(n−κ2)

for some κ2 > 0. This result follows from our definition of σ̄, which is in the
range of [σ − Ln,σ + Ln] for some Ln ∼ n−ηl . Since the result (B.4) holds
for all µ in Aµ, we have

∫

µ∈Aµ

φσ̄(x− µ)dGµ(µ) =

∫

µ∈Aµ

φσ(x− µ)
φνσ̄(µ− x)

φσ(µ− x)
dGµ(µ)

=

∫

µ∈Aµ

φσ̄(x− µ)dGµ(µ)
{

1 +O(n−κ2)
}

.

Together with (B.3), claim (ii) holds true.
To prove claim (iii), we first show that

f (1)
σ (x) =

∫

φσ(x− µ)
µ− x

σ2
dGµ(µ)

=

∫

µ∈Aµ

φσ(x− µ)
µ− x

σ2
dGµ(µ)

{

1 +O(n−κ2)
}

for some κ > 0. The above claim holds true by using similar arguments for
normal tails (as the term (x−µ) essentially has no impact on the rate). We
can likewise argue that

f̄ (1)
σ (x) =

∫

Aµ

σ2

(νσ̄)2
φνσ̄(µ− x)

φσ(µ− x)
φσ(µ− x)

µ− x

σ2
dGµ(µ)

= f (1)
σ (x){1 +O(n−ε)}

for some ϵ > 0. This proves (iii) and completes the proof of the lemma. Note
that the proof is done without using the truncated version of δ̄. Since the
truncation will always reduce the MSE, the result holds for the truncated δ̄
automatically.

B.2. Proof of Lemma 3. It is sufficient to prove the result over Rx

defined in (B.1). Begin by defining R1 = f̃ (1)
σ (x)− f̄ (1)

σ (x) and R2 = f̃σ(x)−
f̄σ(x). Then we can represent the squared difference as

(B.5) (δ̃ − δ̄)2 = O

⎛

⎝

{

R1

f̄σ(x) +R2

}2

+

[

R2f̄
(1)
σ (x)

f̄σ(x){f̄σ(x) +R2}

]2
⎞

⎠ .
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Consider Ln defined in the previous section. We first study the asymptotic
behavior of R2.

(B.6) R2 =
∑

σj∈Aσ

wj
{

fσj (x)− fνσ̄(x)
}

+Kn(σ),

where the last term can be calculated as

Kn(σ) =
∑

σj∈AC
σ

wj
{

fσj (x)− fνσ̄(x)
}

= O

⎛

⎝

∑

σj∈AC
σ

wj

⎞

⎠ .

The last equation holds since both fσj (x) and fνσ̄(x) are bounded according

to our assumption σ2l ≤ σ2j ≤ σ2u for all j. ConsiderAµ :=
{

µ : |µ− x| ≤
√

log(n)
}

.

We have

fνσ̄(x)

fσj (x)
=

∫

µ∈Aµ
φνσ̄(x− µ)dGµ(µ)

∫

µ∈Aµ
φσj (x− µ)dGµ(µ)

{

1 +O(n−κ1)
}

for some κ1 > 0, and in the range of µ ∈ Aµ, we have

φνσ̄(µ− x)/φσ(µ− x) = 1 +O(n−κ2)

for some κ2 > 0 and all j such that σj ∈ Aσ. We conclude that the first term
in (B.6) is O(n−κ) for some κ > 0 since fσj (x) is bounded and

∑

j∈Nσ
wj ≤ 1.

Now we focus on the asymptotic behavior of
∑

σj∈AC
σ
ωσj (σ). Let K1 be

the event that

n−1
n
∑

j=1

φhσ(σj − σ) <
1

2
{gσ ∗ φhσ}(σ)

and K2 the event that

n−1
n
∑

j=1
{σj∈AC

σ }φhσ(σj − σ) > 2

∫

AC
σ

gσ(y)φ(y − σ)dy.

Let Yj = φhσ(σj − σ). Then for aj ≤ Yj ≤ bj , we use Hoeffding’s inequality

P
(

|Ȳ − E(Ȳ )| ≥ t
)

≤ 2 exp

{

−
2n2t2

∑n
j=1(bi − ai)2

}

.

Taking t = 1
2E(Yi), we have

P(K1) ≤ 2 exp

{

−
(1/2)n2{E(Yi)}2

n ·O(h−1
σ )

}

= O(n−ϵ)
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for some ϵ > 0. Similarly we can show that P(K2) = O(n−ϵ) for some ϵ > 0.
Moreover, on the event K = KC

1 ∩KC
2 , we have

∑

σj∈AC
σ

ωσj (σ) ≤
4
∫

AC
σ
gσ(y)φ(y − σ)dy

{gσ ∗ φhσ}(σ)
= O(n−ϵ)

for some ϵ > 0. We use the same ϵ in the previous arguments, which can be
achieved easily by appropriate adjustments (taking the smallest). Previously
we have shown that the first term in (B.6) is O(n−ϵ). Hence on event K,
R2 = O(n−κ) for some κ > 0.

Now consider the domain Rx. Define Sx := {x : f̄σ(x) > n−κ′}, where
0 < κ′ < κ. On Rx ∩ SCx , we have

(B.7)

∫ ∫

Rx∩SCx
(δ̃ − δ̄)2fσ(x)dxdGσ(σ) = O{C ′2

n · P(Rx ∩ SCx )} = O(n−κ)

for some κ > 0. The previous claim holds true since the length of Rx is
bounded by C ′

n, and both δ̃ and δ̄ are truncated by C ′
n.

Now we only need to prove the result for the region Rx∩Sx. On event K,
we have

Eσσσ2

⎛

⎝ K ·
∫ ∫

Rx∩Sx

[

R2f̄
(1)
σ (x)

f̄σ(x){f̄σ(x) +R2}

]2

fσ(x)dxdGσ(σ)

⎞

⎠

= O(C ′2
n )O

(

n−(κ−κ′)
)

,

which is O(n−η) for some η > 0. On event KC ,

Eσσσ2

(

KC ·
∫ ∫

Rx∩Sx
(δ̃ − δ̄)2fσ(x)dxdGσ(σ)

)

= O(C ′2
n )O(n−ϵ),

which is also O(n−η). Hence the risk regarding the second term of (B.5) is
vanishingly small. Similarly, we can show that the first term satisfies

Eσσσ2

(

∫ ∫

Rx∩Sx

{

R1

f̄σ(x) +R2

}2

fσ(x)dxdGσ(σ)

)

= O(n−η).

Together with (B.7), we establish the desired result.
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B.3. Proof of Lemma 4. Let S1 = f̂ (1)
σ (x)− f̃ (1)

σ (x) and S2 = f̂σ(x)−
f̃σ(x). Then

(B.8) (δ̃ − δ̂)2 ≤ 2σ4

⎡

⎣

{

f̃ (1)
σ (x)

f̃σ(x)

}2
{

S2

S2 + f̃σ(x)

}2

+

{

S1

S2 + f̃σ(x)

}2
⎤

⎦ .

According to the definition of f̃σ(x) [cf. equation (6.2)], we have EXXX,µµµ|σσσ2(S2) =
0. By doing differentiation on both sides we further have EXXX,µµµ|σσσ2(S1) = 0.

A key step in our analysis is to study the variance of S2. We aim to show
that

(B.9) VXXX,µµµ,σσσ2(S2) = O(n−1h−1
σ h−1

x ).

To see this, first note that

VXXX,µµµ|σσσ2(S2) =
n
∑

j=1

w2
jVXXX,µµµ|σσσ2{φhxj (x−Xj)}, where

V{φhxj (x−Xj)}

=

∫

{φhxj (x− y)}2{gµ ∗ φσj}(y)dy −
{
∫

φhxj (x− y){gµ ∗ φσj}(y)dy
}2

=
1

hxσ2j

∫

φ2(z)gµ ∗ φ(x+ hxσjz)dz −
{

1

σj

∫

φ(z)gµ ∗ φσj (x+ hxσjz)dz

}2

=
1

hxσ2j

{
∫

φ2(z)dz

}

fσj (x){1 + o(1)}−
{

1

σj
fσj (x)

}2

{1 + o(1)}

= O(h−1
x ).

Next we shall show that

(B.10) Eσσσ2

{

∑n
j=1w

2
j

}

= O
(

n−1h−1
σ

)

.

Observe that φhσ(σj − σ) = O(h−1
σ ) for all j. Therefore we have

n
∑

j=1

φ2hσ
(σj − σ) = O(h−1

σ )
n
∑

j=1

φhσ(σj − σ),

which further implies that

n
∑

j=1

w2
j =

∑n
j=1 φ

2
hσ
(σj − σ)

{

∑n
j=1 φhσ(σj − σ)

}2 =
O(n−1h−1

σ )

n−1
∑n

j=1 φhσ(σj − σ)
.
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Let Yj = φhσ(φi − φ) and Ȳ = n−1∑n
j=1 Yi. Then 0 ≤ Yj ≤ (

√
2πhσ)−1

and
E(Yj) = {gσ ∗ φhσ}(σ) = gσ(σ) +O(h2σ).

Let E1 be the event such that Ȳ < 1
2E(Ȳ ). We apply Hoeffding’s inequality

to obtain

P

{

Ȳ <
1

2
E(Ȳ )

}

≤ P

{

|Ȳ − E(Ȳ )| ≥
1

2
E(Ȳ )

}

≤ 2 exp

{

−
2n2gσ ∗ φhσ(σ)

n(2π)−1h−2
σ

}

≤ 2 exp(Cnh2σ) = O(n−1).

Note that
∑n

j=1w
2
j ≤

∑n
j=1wj = 1. We have

E(
n
∑

j=1

w2
j ) = E

⎛

⎝

n
∑

j=1

w2
j E

⎞

⎠+ E

⎛

⎝

n
∑

j=1

w2
j

C
E

⎞

⎠

= O(n−1h−1
σ ) +O(n−1)

= O(n−1h−1
σ ),

proving (B.10). Next, consider the variance decomposition

VXXX,µµµ,σσσ2(S2) = Vσσσ2{EXXX,µµµ|σσσ2(S2)}+ Eσσσ2{VXXX,µµµ|σσσ2(S2)}.

The first term is zero, and the second term is given by

Eσσσ2{VXXX,µµµ|σσσ2(S2)} = O(h−1
x )E

(

∑n
j=1w

2
j

)

= O(n−1h−1
σ h−1

x ).

We simplify the notation and denote the variance of S2 by V(S2) directly.
Therefore V(S2) = O(n−ϵ) for some ϵ > 0. Consider the following space
Qx = {x : f̃σ(x) > n−ϵ′}, where 2ϵ′ < ϵ. In the proof of the previous
lemmas, we showed that on Rx,

f̃σ(x) = fσ(x){1 +O(n−ϵ)}+Kn,

where Kn is a bounded random variable due to the variability of σ2j , and
Eσσσ2(Kn) = O(n−ε) for some ε > 0. Next we show it is sufficient to only
consider Qx. To see this, note that

Eσσσ2

(

∫ ∫

Rx∩QC
x

(δ̃ − δ̄)2fσ(x)dxdGσ(σ)

)

= Eσσσ2

(

∫ ∫

Rx∩QC
x

(δ̃ − δ̄)2
[

f̃σ(x){1 +O(n−ϵ)}+Kn

]

dxdGσ(σ)

)

= O(C ′3
n )
{

O(n−ϵ′) +O(n−ϵ′−ϵ) +O(n−1/2)
}

,
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which is also O(n−η) for some η > 0. Let

Yj = wjφhxj (x−Xj)− wj
{

gµ ∗ φνσj

}

(x)

and Ȳ = n−1∑n
j=1 Yj . Then E(Yj) = 0, S2 =

∑n
j=1 Yj , and 0 ≤ Yj ≤ Dn,

where Dn ∼ h−1
x . Let E2 be the event such that S2 < −1

2 f̃σ(x). Then by
applying Hoeffding’s inequality,

P(E2) ≤ P

{

|Ȳ − E(Ȳ )| ≥
1

2
f̃σ(x)

}

≤ 2 exp

{

−
2n2{1

2 f̃σ(x)}
2

nD2
n

}

= O(n−ϵ)

for some ϵ > 0. Note that on event E2, we have

EXXX,µµµ,σσσ2

{

(δ̂ − δ̃)2 E2

}

= O(C2
n)O(n−ϵ) = o(1).

Therefore, we only need to focus on the event EC
2 , on which we have

f̃σ(x) + S2 ≥
1

2
f̃σ(x).

It follows that on EC
2 , we have

{S2/(f̃σ(x) + S2)}2 ≤ 4S2
2/{f̃σ(x)}2.

Therefore the first term on the right of (B.8) can be controlled as

EXXX,µµµ,σσσ2

⎛

⎝

EC
2
·
∫ ∫

Rx∩Qx

{

f̃ (1)
σ (x)

f̃σ(x)

}2
{

S2

S2 + f̃σ(x)

}2

fσ(x)dxdGσ(σ)

⎞

⎠

= O(C ′2
n )O(n−(ϵ−2ϵ′)) = O(n−η)

for some η > 0. Hence we show that the first term of (B.8) is vanishingly
small.

For the second term in (B.8), we need to evaluate the variance term of S1,
which can be similarly shown to be of orderO(n−η) for some η > 0. Following
similar arguments, we can prove that the expectation of the second term in
(B.8) is also vanishingly small, establishing the desired result.
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Table 5

Proportion of large schools. Bolded terms represent best performances.

Method
2002–
2004

2003–
2005

2004–
2006

2005–
2007

2006–
2008

2007–
2009

2008–
2010

Naive 0.10 0.11 0.12 0.12 0.12 0.14 0.16
NEST 0.20 0.19 0.26 0.26 .29 0.25 .24
TF 0.13 0.16 0.15 0.18 0.19 0.24 0.29

Scaled 0.11 0.12 0.12 0.12 0.12 0.17 0.18
2 Group 0.13 0.15 0.15 0.18 0.18 0.25 0.29
3 Group 0.13 0.15 0.15 0.16 0.18 0.22 0.26
4 Group 0.13 0.15 0.15 0.17 0.18 0.25 0.27
5 Group 0.13 0.15 0.15 0.17 0.17 0.26 0.29
Group L 0.13 0.16 0.17 0.18 0.24 0.29 0.28
SURE-M 0.16 0.17 0.19 0.21 0.24 0.34 0.28
SURE-SG 0.16 0.17 0.18 0.21 0.22 0.32 0.26

APPENDIX C: TABLE OF LARGE SCHOOL PROPORTIONS

Table 5 shows three–year windows for the proportion of large schools
selected into the 100 schools by each method. The three–year windows range
from 2002 - 2004 to 2008 - 2010. NEST is among the closest to giving large
schools 25% representation for 6 of 7 years.
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