Supplementary Material for "Nonparametric Empirical Bayes estimation on heterogeneous data"

This supplement contains additional theoretical results (Sections A and B) and additional numerical results (Section C).

APPENDIX A: EXPRESSIONS FOR COMMON MEMBERS OF THE EXPONENTIAL FAMILY

We observe $(x_1, \theta_1), \ldots, (x_n, \theta_n)$ with conditional distribution

(A.1)
$$f_{\theta_i}(x_i|\eta_i) = \exp\left\{\eta_i z_i - \psi(\eta_i)\right\} h_{\theta_i}(z_i),$$

where θ_i is a known nuisance parameter and η_i is an unknown parameter of interest. In addition to the Gaussian distribution, there are several common cases of (A.1).

Binomial:

$$f_{n_i}(x_i|\eta_i) = \frac{n_i!}{x_i!(n_i - x_i)!} p_i^{x_i} (1 - p_i)^{n_i - x_i} = \exp\left\{\eta_i x_i - \psi(\eta_i)\right\} h_{n_i}(x_i),$$

where $\eta_i = \log\left(\frac{p_i}{1-p_i}\right), \theta_i = n_i, \psi(\eta_i) = n_i \log(1+e^{\eta_i}), \text{ and } h_{n_i}(x_i) = \frac{n_i!}{x_i!(n_i-x_i)!}.$

Negative Binomial:

$$f_{r_i}(x_i|\eta_i) = \frac{(x_i + r_i - 1)!}{x_i!(r_i - 1)!} p_i^{z_i} (1 - p_i)^{r_i} = \exp\left\{\eta_i x_i - \psi(\eta_i)\right\} h_{r_i}(x_i),$$

where $\eta_i = \log p_i, \theta_i = r_i, \psi(\eta_i) = r_i \log (1 - e^{\eta_i})$, and $h_{r_i}(x_i) = \frac{(x_i + r_i - 1)!}{z_i!(r_i - 1)!}$.

Gamma:

$$f_{\alpha_i}(x_i|\eta_i) = \frac{1}{\Gamma(\alpha_i)} \beta_i^{\alpha_i} x_i^{\alpha_i - 1} \exp(-\beta_i x_i) = \exp\left\{\eta_i x_i - \psi(\eta_i)\right\} h_{\alpha_i}(x_i),$$

where $\eta_i = -\beta_i, \theta_i = \alpha_i, \psi(\eta_i) = -\alpha_i \log(-\eta_i)$, and $h_{\alpha_i}(x_i) = \frac{1}{\Gamma(\alpha_i)} x_i^{\alpha-1}$.

Beta:

$$f_{\alpha_i}(z_i|\eta_i) = \frac{1}{B(\alpha_i, \beta_i)} x_i^{\alpha_i} (1 - x_i)^{\beta_i - 1} = \exp\{\eta_i z_i - \psi(\eta_i)\} h_{\beta_i}(z_i),$$

where $z_i = \log x_i, \eta_i = \alpha_i, \theta_i = \beta_i, \psi(\eta_i) = \log B(\eta_i, \beta_i)$ and $h_{\beta_i}(z_i) = (1 - e^{z_i})^{\beta_i - 1}$.

Hence, we can compute $l'_{h,\theta}(z)$ explicitly for these distributions.

• Binomial: $-l'_{h,n_i}(x_i) = \sum_{k=1}^{x_i} \frac{1}{k} + \sum_{k=1}^{n_i-x_i} \frac{1}{k} - 2\gamma$ where γ is the Euler-Mascheroni constant

• Negative Binomial:
$$-l'_{h,r_i}(x_i) = \begin{cases} \sum_{k=x_i+1}^{x_i+r_i-1} \frac{1}{k} & r_i > 1\\ 0 & r_i = 1 \end{cases}$$

- Gamma: $-l'_{h,\alpha_i}(x_i) = (1 \alpha_i)\frac{1}{x_i}$
- Beta: $-l'_{h,\alpha_i}(z_i) = (\beta_i 1)\frac{e^{z_i}}{1 e^{z_i}} = (\beta_i 1)\frac{x_i}{1 x_i}.$

Combining these expressions with (2.9) we can express $E_{\theta}(\eta|x)$ as follows:

- Binomial: $E_{n_i}\left(\log(\frac{p_i}{1-p_i})|x_i\right) = \sum_{k=1}^{x_i} \frac{1}{k} + \sum_{k=1}^{n_i-x_i} \frac{1}{k} 2\gamma + l'_{f,n_i}(x_i)$
- Negative Binomial: $E_{r_i}(\log p_i | x_i) = l'_{f,r_i}(x_i) + \begin{cases} \sum_{k=x_i+1}^{x_i+r_i-1} \frac{1}{k} & r_i > 1\\ 0 & r_i = 1 \end{cases}$
- Gamma: $E_{\alpha_i}(\beta_i|x_i) = (\alpha_i 1)\frac{1}{x_i} l'_{f,\alpha_i}(x_i)$
- Beta: $E_{\beta_i}(\alpha_i|z_i) = (\beta_i 1)\frac{x_i}{1 x_i} + l'_{f,\beta_i}(z_i).$

APPENDIX B: PROOF OF LEMMAS 2 TO 4

B.1. Proof of Lemma 2. We first argue in Section B.1.1 that it is sufficient to prove the result over the following domain

(B.1) $\mathbb{R}_x \coloneqq \{x : C_n - \log n \le x \le C_n + \log n\}.$

This simplification can be applied to the proofs of other lemmas.

2

B.1.1. Truncating the domain. Our goal is to show that $(\hat{\delta} - \delta^{\pi})^2$ is negligible on \mathbb{R}_x^C . Since $|\mu| \leq C_n$ by Assumption 1, the oracle estimator is bounded:

$$\delta^{\pi} = \mathbb{E}(X|\mu, \sigma^2) = \frac{\int \mu \phi_{\sigma}(x-\mu) dG_{\mu}(\mu)}{\int \phi_{\sigma}(x-\mu) dG_{\mu}(\mu)} < C_n.$$

Let $C'_n = C_n + \log n$. Consider the truncated NEST estimator $\hat{\delta} \wedge C'_n$. The two intermediate estimators $\tilde{\delta}$ and $\bar{\delta}$ are truncated correspondingly without altering their notations. Let $\mathbb{1}_{\mathbb{R}_x}$ be the indicator function that is 1 on \mathbb{R}_x and 0 elsewhere. Our goal is to show that

(B.2)
$$\int \int \int_{\mathbb{R}^C_{\boldsymbol{x}}} (\hat{\delta} - \delta^{\pi})^2 \phi_{\sigma}(x-\mu) dx dG_{\mu}(\mu) dG_{\sigma}(\sigma) = O(n^{-\kappa})$$

for some small $\kappa > 0$. Note that for all $x \in \mathbb{R}_x^C$, the normal tail density vanishes exponentially: $\phi_{\sigma}(x-\mu) = O(n^{-\epsilon'})$ for some $\epsilon' > 0$. The desired result follows from the fact that $(\hat{\delta} - \delta^{\pi})^2 = o(n^{\eta})$ for any $\eta > 0$, according to the assumption on C_n .

B.1.2. Proof of the lemma. We first apply triangle inequality to obtain

$$(\bar{\delta} - \delta^{\pi})^{2} \le \sigma^{4} \left\{ \frac{f_{\sigma}^{(1)}(x)}{f_{\sigma}(x)} \right\}^{2} \left\{ \frac{f_{\sigma}(x)}{\bar{f}_{\sigma}(x)} \right\}^{2} \left[\left\{ \frac{\bar{f}_{\sigma}^{(1)}(x)}{f_{\sigma}^{(1)}(x)} - 1 \right\}^{2} + \left\{ \frac{\bar{f}_{\sigma}(x)}{\bar{f}_{\sigma}(x)} - 1 \right\}^{2} \right]^{2}$$

Hence the lemma follows if we can prove the following facts for $x \in \mathbb{R}_x$.

(i) $f_{\sigma}^{(1)}(x)/f_{\sigma}(x) = O(C'_n)$, where $C'_n = C_n + \log n$. (ii) $\bar{f}_{\sigma}(x)/f_{\sigma}(x) = 1 + O(n^{-\varepsilon})$ for some $\varepsilon > 0$. (iii) $\bar{f}_{\sigma}^{(1)}(x)/f_{\sigma}^{(1)}(x) = 1 + O(n^{-\varepsilon})$ for some $\varepsilon > 0$.

To prove (i), note that $\delta^{\pi} = O(C_n)$ as shown earlier, and $x = O(C'_n)$ if $x \in \mathbb{R}_x$. The oracle estimator satisfies $\delta^{\pi} = x + \sigma^2 f_{\sigma}^{(1)}(x) / f_{\sigma}(x)$. By Assumption 2, G_{σ} has a finite support, so we claim that $f_{\sigma}^{(1)}(x) / f_{\sigma}(x) = O(C_n)$.

Now consider claim (ii). Let $\mathcal{A}_{\mu} \coloneqq \left\{ \mu : |\mu - x| \leq \sqrt{\log(n)} \right\}$. Following similar arguments to the previous sections, we apply the normal tail bounds to claim that $\phi_{\nu\bar{\sigma}}(\mu - x) = O\{n^{-1/(2\sigma^2+1)}\}$. Similar arguments apply to $f_{\sigma}(x)$ when $\mu \in \mathcal{A}_{\mu}$. Therefore

(B.3)
$$\frac{\bar{f}_{\sigma}(x)}{f_{\sigma}(x)} = \frac{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\nu \bar{\sigma}}(x-\mu) dG_{\mu}(\mu)}{\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) dG_{\mu}(\mu)} \left\{ 1 + O(n^{-\kappa_1}) \right\}$$

for some $\kappa_1 > 0$. Next, we evaluate the ratio in the range of \mathcal{A}_{μ} :

(B.4)
$$\frac{\phi_{\nu\bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)} = \frac{\sigma}{(\nu\bar{\sigma})} \exp\left[-\frac{1}{2}(\mu-x)^2\left\{\frac{1}{(\nu\bar{\sigma})^2} - \frac{1}{\sigma^2}\right\}\right] = 1 + O(n^{-\kappa_2})$$

for some $\kappa_2 > 0$. This result follows from our definition of $\bar{\sigma}$, which is in the range of $[\sigma - L_n, \sigma + L_n]$ for some $L_n \sim n^{-\eta_l}$. Since the result (B.4) holds for all μ in \mathcal{A}_{μ} , we have

$$\int_{\mu \in \mathcal{A}_{\mu}} \phi_{\bar{\sigma}}(x-\mu) dG_{\mu}(\mu) = \int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) \frac{\phi_{\nu\bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)} dG_{\mu}(\mu)$$
$$= \int_{\mu \in \mathcal{A}_{\mu}} \phi_{\bar{\sigma}}(x-\mu) dG_{\mu}(\mu) \left\{ 1 + O(n^{-\kappa_2}) \right\}.$$

Together with (B.3), claim (ii) holds true.

To prove claim (iii), we first show that

$$f_{\sigma}^{(1)}(x) = \int \phi_{\sigma}(x-\mu) \frac{\mu-x}{\sigma^2} dG_{\mu}(\mu)$$
$$= \int_{\mu \in \mathcal{A}_{\mu}} \phi_{\sigma}(x-\mu) \frac{\mu-x}{\sigma^2} dG_{\mu}(\mu) \left\{ 1 + O(n^{-\kappa_2}) \right\}$$

for some $\kappa > 0$. The above claim holds true by using similar arguments for normal tails (as the term $(x - \mu)$ essentially has no impact on the rate). We can likewise argue that

$$\bar{f}_{\sigma}^{(1)}(x) = \int_{\mathcal{A}_{\mu}} \frac{\sigma^2}{(\nu\bar{\sigma})^2} \frac{\phi_{\nu\bar{\sigma}}(\mu-x)}{\phi_{\sigma}(\mu-x)} \phi_{\sigma}(\mu-x) \frac{\mu-x}{\sigma^2} dG_{\mu}(\mu)$$
$$= f_{\sigma}^{(1)}(x) \{1 + O(n^{-\varepsilon})\}$$

for some $\epsilon > 0$. This proves (iii) and completes the proof of the lemma. Note that the proof is done without using the truncated version of $\bar{\delta}$. Since the truncation will always reduce the MSE, the result holds for the truncated $\bar{\delta}$ automatically.

B.2. Proof of Lemma 3. It is sufficient to prove the result over \mathbb{R}_x defined in (B.1). Begin by defining $R_1 = \tilde{f}_{\sigma}^{(1)}(x) - \bar{f}_{\sigma}^{(1)}(x)$ and $R_2 = \tilde{f}_{\sigma}(x) - \bar{f}_{\sigma}(x)$. Then we can represent the squared difference as

(B.5)
$$(\tilde{\delta} - \bar{\delta})^2 = O\left(\left\{\frac{R_1}{\bar{f}_{\sigma}(x) + R_2}\right\}^2 + \left[\frac{R_2\bar{f}_{\sigma}^{(1)}(x)}{\bar{f}_{\sigma}(x)\{\bar{f}_{\sigma}(x) + R_2\}}\right]^2\right).$$

Consider L_n defined in the previous section. We first study the asymptotic behavior of R_2 .

(B.6)
$$R_2 = \sum_{\sigma_j \in \mathcal{A}_{\sigma}} w_j \left\{ f_{\sigma_j}(x) - f_{\nu\bar{\sigma}}(x) \right\} + K_n(\sigma),$$

where the last term can be calculated as

$$K_n(\sigma) = \sum_{\sigma_j \in \mathcal{A}_{\sigma}^C} w_j \left\{ f_{\sigma_j}(x) - f_{\nu\bar{\sigma}}(x) \right\} = O\left(\sum_{\sigma_j \in \mathcal{A}_{\sigma}^C} w_j\right).$$

The last equation holds since both $f_{\sigma_j}(x)$ and $f_{\nu\bar{\sigma}}(x)$ are bounded according to our assumption $\sigma_l^2 \leq \sigma_j^2 \leq \sigma_u^2$ for all *j*. Consider $\mathcal{A}_{\mu} \coloneqq \left\{ \mu : |\mu - x| \leq \sqrt{\log(n)} \right\}$. We have

/

$$\frac{f_{\nu\bar{\sigma}}(x)}{f_{\sigma_j}(x)} = \frac{\int_{\mu\in\mathcal{A}_{\mu}}\phi_{\nu\bar{\sigma}}(x-\mu)dG_{\mu}(\mu)}{\int_{\mu\in\mathcal{A}_{\mu}}\phi_{\sigma_j}(x-\mu)dG_{\mu}(\mu)}\left\{1+O(n^{-\kappa_1})\right\}$$

for some $\kappa_1 > 0$, and in the range of $\mu \in \mathcal{A}_{\mu}$, we have

$$\phi_{\nu\bar{\sigma}}(\mu-x)/\phi_{\sigma}(\mu-x) = 1 + O(n^{-\kappa_2})$$

for some $\kappa_2 > 0$ and all j such that $\sigma_j \in \mathcal{A}_{\sigma}$. We conclude that the first term in (B.6) is $O(n^{-\kappa})$ for some $\kappa > 0$ since $f_{\sigma_j}(x)$ is bounded and $\sum_{j \in \mathcal{N}_{\sigma}} w_j \leq 1$. Now we focus on the asymptotic behavior of $\sum_{\sigma_j \in A_{\sigma}^C} \omega_{\sigma_j}(\sigma)$. Let K_1 be

the event that

$$n^{-1}\sum_{j=1}^{n}\phi_{h_{\sigma}}(\sigma_{j}-\sigma) < \frac{1}{2}\{g_{\sigma}\ast\phi_{h_{\sigma}}\}(\sigma)$$

and K_2 the event that

$$n^{-1}\sum_{j=1}^{n}\mathbb{1}_{\{\sigma_{j}\in A_{\sigma}^{C}\}}\phi_{h_{\sigma}}(\sigma_{j}-\sigma)>2\int_{A_{\sigma}^{C}}g_{\sigma}(y)\phi(y-\sigma)dy.$$

Let $Y_j = \phi_{h_{\sigma}}(\sigma_j - \sigma)$. Then for $a_j \leq Y_j \leq b_j$, we use Hoeffding's inequality

$$\mathbb{P}\left(|\bar{Y} - \mathbb{E}(\bar{Y})| \ge t\right) \le 2 \exp\left\{-\frac{2n^2 t^2}{\sum_{j=1}^n (b_i - a_j)^2}\right\}.$$

Taking $t = \frac{1}{2}\mathbb{E}(Y_i)$, we have

$$\mathbb{P}(K_1) \le 2 \exp\left\{-\frac{(1/2)n^2 \{\mathbb{E}(Y_i)\}^2}{n \cdot O(h_{\sigma}^{-1})}\right\} = O(n^{-\epsilon})$$

for some $\epsilon > 0$. Similarly we can show that $\mathbb{P}(K_2) = O(n^{-\epsilon})$ for some $\epsilon > 0$. Moreover, on the event $K = K_1^C \cap K_2^C$, we have

$$\sum_{\sigma_j \in A_{\sigma}^C} \omega_{\sigma_j}(\sigma) \le \frac{4 \int_{A_{\sigma}^C} g_{\sigma}(y) \phi(y - \sigma) dy}{\{g_{\sigma} * \phi_{h_{\sigma}}\}(\sigma)} = O(n^{-\epsilon})$$

for some $\epsilon > 0$. We use the same ϵ in the previous arguments, which can be achieved easily by appropriate adjustments (taking the smallest). Previously we have shown that the first term in (B.6) is $O(n^{-\epsilon})$. Hence on event K, $R_2 = O(n^{-\kappa})$ for some $\kappa > 0$.

Now consider the domain \mathbb{R}_x . Define $\mathbb{S}_x := \{x : \bar{f}_{\sigma}(x) > n^{-\kappa'}\}$, where $0 < \kappa' < \kappa$. On $\mathbb{R}_x \cap \mathbb{S}_x^C$, we have

(B.7)
$$\int \int_{\mathbb{R}_x \cap \mathbb{S}_x^C} (\tilde{\delta} - \bar{\delta})^2 f_{\sigma}(x) dx dG_{\sigma}(\sigma) = O\{C_n^{\prime 2} \cdot \mathbb{P}(\mathbb{R}_x \cap \mathbb{S}_x^C)\} = O(n^{-\kappa})$$

for some $\kappa > 0$. The previous claim holds true since the length of \mathbb{R}_x is bounded by C'_n , and both $\tilde{\delta}$ and $\bar{\delta}$ are truncated by C'_n .

Now we only need to prove the result for the region $\mathbb{R}_x \cap \mathbb{S}_x$. On event K, we have

$$\mathbb{E}_{\sigma^2} \left(\mathbbm{1}_K \cdot \int \int_{\mathbb{R}_x \cap \mathbb{S}_x} \left[\frac{R_2 \bar{f}_{\sigma}^{(1)}(x)}{\bar{f}_{\sigma}(x) \{ \bar{f}_{\sigma}(x) + R_2 \}} \right]^2 f_{\sigma}(x) dx dG_{\sigma}(\sigma) \right)$$

= $O(C_n'^2) O\left(n^{-(\kappa - \kappa')} \right),$

which is $O(n^{-\eta})$ for some $\eta > 0$. On event K^C ,

$$\mathbb{E}_{\sigma^2}\left(\mathbbm{1}_{K^C}\cdot\int\int_{\mathbb{R}_x\cap\mathbb{S}_x}(\tilde{\delta}-\bar{\delta})^2f_{\sigma}(x)dxdG_{\sigma}(\sigma)\right)=O(C_n'^2)O(n^{-\epsilon}),$$

which is also $O(n^{-\eta})$. Hence the risk regarding the second term of (B.5) is vanishingly small. Similarly, we can show that the first term satisfies

$$\mathbb{E}_{\sigma^2}\left(\int\int_{\mathbb{R}_x\cap\mathbb{S}_x}\left\{\frac{R_1}{\bar{f}_{\sigma}(x)+R_2}\right\}^2 f_{\sigma}(x)dxdG_{\sigma}(\sigma)\right)=O(n^{-\eta}).$$

Together with (B.7), we establish the desired result.

B.3. Proof of Lemma 4. Let $S_1 = \hat{f}_{\sigma}^{(1)}(x) - \tilde{f}_{\sigma}^{(1)}(x)$ and $S_2 = \hat{f}_{\sigma}(x) - \tilde{f}_{\sigma}(x)$. Then

(B.8)
$$(\tilde{\delta} - \hat{\delta})^2 \le 2\sigma^4 \left[\left\{ \frac{\tilde{f}_{\sigma}^{(1)}(x)}{\tilde{f}_{\sigma}(x)} \right\}^2 \left\{ \frac{S_2}{S_2 + \tilde{f}_{\sigma}(x)} \right\}^2 + \left\{ \frac{S_1}{S_2 + \tilde{f}_{\sigma}(x)} \right\}^2 \right].$$

According to the definition of $\tilde{f}_{\sigma}(x)$ [cf. equation (6.2)], we have $\mathbb{E}_{\boldsymbol{X},\boldsymbol{\mu}|\sigma^2}(S_2) = 0$. By doing differentiation on both sides we further have $\mathbb{E}_{\boldsymbol{X},\boldsymbol{\mu}|\sigma^2}(S_1) = 0$. A key step in our analysis is to study the variance of S_2 . We aim to show

that

(B.9)
$$\mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\sigma}^2}(S_2) = O(n^{-1}h_{\sigma}^{-1}h_x^{-1}).$$

To see this, first note that

$$\mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu}|\boldsymbol{\sigma}^2}(S_2) = \sum_{j=1}^n w_j^2 \mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu}|\boldsymbol{\sigma}^2} \{\phi_{h_{xj}}(x-X_j)\}, \text{ where}$$

$$\mathbb{V}\{\phi_{h_{xj}}(x-X_{j})\}$$

$$= \int \{\phi_{h_{xj}}(x-y)\}^{2}\{g_{\mu} * \phi_{\sigma_{j}}\}(y)dy - \left\{\int \phi_{h_{xj}}(x-y)\{g_{\mu} * \phi_{\sigma_{j}}\}(y)dy\right\}^{2}$$

$$= \frac{1}{h_{x}\sigma_{j}^{2}}\int \phi^{2}(z)g_{\mu} * \phi(x+h_{x}\sigma_{j}z)dz - \left\{\frac{1}{\sigma_{j}}\int \phi(z)g_{\mu} * \phi_{\sigma_{j}}(x+h_{x}\sigma_{j}z)dz\right\}^{2}$$

$$= \frac{1}{h_{x}\sigma_{j}^{2}}\left\{\int \phi^{2}(z)dz\right\}f_{\sigma_{j}}(x)\{1+o(1)\} - \left\{\frac{1}{\sigma_{j}}f_{\sigma_{j}}(x)\right\}^{2}\{1+o(1)\}$$

$$= O(h_{x}^{-1}).$$

Next we shall show that

(B.10)
$$\mathbb{E}_{\sigma^2}\left\{\sum_{j=1}^n w_j^2\right\} = O\left(n^{-1}h_{\sigma}^{-1}\right).$$

Observe that $\phi_{h_{\sigma}}(\sigma_j - \sigma) = O(h_{\sigma}^{-1})$ for all j. Therefore we have

$$\sum_{j=1}^{n} \phi_{h_{\sigma}}^2(\sigma_j - \sigma) = O(h_{\sigma}^{-1}) \sum_{j=1}^{n} \phi_{h_{\sigma}}(\sigma_j - \sigma),$$

which further implies that

$$\sum_{j=1}^{n} w_j^2 = \frac{\sum_{j=1}^{n} \phi_{h_\sigma}^2(\sigma_j - \sigma)}{\left\{\sum_{j=1}^{n} \phi_{h_\sigma}(\sigma_j - \sigma)\right\}^2} = \frac{O(n^{-1}h_{\sigma}^{-1})}{n^{-1}\sum_{j=1}^{n} \phi_{h_\sigma}(\sigma_j - \sigma)}.$$

Let $Y_j = \phi_{h_\sigma}(\phi_i - \phi)$ and $\overline{Y} = n^{-1} \sum_{j=1}^n Y_i$. Then $0 \le Y_j \le (\sqrt{2\pi}h_\sigma)^{-1}$ and

$$\mathbb{E}(Y_j) = \{g_{\sigma} * \phi_{h_{\sigma}}\}(\sigma) = g_{\sigma}(\sigma) + O(h_{\sigma}^2).$$

Let E_1 be the event such that $\overline{Y} < \frac{1}{2}E(\overline{Y})$. We apply Hoeffding's inequality to obtain

$$\mathbb{P}\left\{\bar{Y} < \frac{1}{2}E(\bar{Y})\right\} \leq \mathbb{P}\left\{|\bar{Y} - E(\bar{Y})| \ge \frac{1}{2}E(\bar{Y})\right\} \\
\leq 2\exp\left\{-\frac{2n^2g_\sigma * \phi_{h_\sigma}(\sigma)}{n(2\pi)^{-1}h_\sigma^{-2}}\right\} \\
\leq 2\exp(Cnh_\sigma^2) = O(n^{-1}).$$

Note that $\sum_{j=1}^{n} w_j^2 \leq \sum_{j=1}^{n} w_j = 1$. We have

$$\mathbb{E}(\sum_{j=1}^{n} w_j^2) = \mathbb{E}\left(\sum_{j=1}^{n} w_j^2 \mathbb{1}_E\right) + \mathbb{E}\left(\sum_{j=1}^{n} w_j^2 \mathbb{1}_E^C\right)$$
$$= O(n^{-1}h_{\sigma}^{-1}) + O(n^{-1})$$
$$= O(n^{-1}h_{\sigma}^{-1}),$$

proving (B.10). Next, consider the variance decomposition

$$\mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\sigma}^2}(S_2) = \mathbb{V}_{\boldsymbol{\sigma}^2}\{\mathbb{E}_{\boldsymbol{X},\boldsymbol{\mu}|\boldsymbol{\sigma}^2}(S_2)\} + \mathbb{E}_{\boldsymbol{\sigma}^2}\{\mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu}|\boldsymbol{\sigma}^2}(S_2)\}.$$

The first term is zero, and the second term is given by

$$\mathbb{E}_{\boldsymbol{\sigma}^2}\{\mathbb{V}_{\boldsymbol{X},\boldsymbol{\mu}|\boldsymbol{\sigma}^2}(S_2)\} = O(h_x^{-1})\mathbb{E}\left(\sum_{j=1}^n w_j^2\right) = O(n^{-1}h_{\sigma}^{-1}h_x^{-1}).$$

We simplify the notation and denote the variance of S_2 by $\mathbb{V}(S_2)$ directly. Therefore $\mathbb{V}(S_2) = O(n^{-\epsilon})$ for some $\epsilon > 0$. Consider the following space $\mathbb{Q}_x = \{x : \tilde{f}_{\sigma}(x) > n^{-\epsilon'}\}$, where $2\epsilon' < \epsilon$. In the proof of the previous lemmas, we showed that on \mathbb{R}_x ,

$$f_{\sigma}(x) = f_{\sigma}(x)\{1 + O(n^{-\epsilon})\} + K_n,$$

where K_n is a bounded random variable due to the variability of σ_j^2 , and $E_{\sigma^2}(K_n) = O(n^{-\varepsilon})$ for some $\varepsilon > 0$. Next we show it is sufficient to only consider \mathbb{Q}_x . To see this, note that

$$\mathbb{E}_{\sigma^{2}}\left(\int\int_{\mathbb{R}_{x}\cap\mathbb{Q}_{x}^{C}}(\tilde{\delta}-\bar{\delta})^{2}f_{\sigma}(x)dxdG_{\sigma}(\sigma)\right)$$

= $\mathbb{E}_{\sigma^{2}}\left(\int\int_{\mathbb{R}_{x}\cap\mathbb{Q}_{x}^{C}}(\tilde{\delta}-\bar{\delta})^{2}\left[\tilde{f}_{\sigma}(x)\{1+O(n^{-\epsilon})\}+K_{n}\right]dxdG_{\sigma}(\sigma)\right)$
= $O(C_{n}^{\prime3})\left\{O(n^{-\epsilon^{\prime}})+O(n^{-\epsilon^{\prime}-\epsilon})+O(n^{-1/2})\right\},$

8

which is also $O(n^{-\eta})$ for some $\eta > 0$. Let

$$Y_j = w_j \phi_{h_{xj}}(x - X_j) - w_j \left\{ g_\mu * \phi_{\nu\sigma_j} \right\} (x)$$

and $\overline{Y} = n^{-1} \sum_{j=1}^{n} Y_j$. Then $\mathbb{E}(Y_j) = 0$, $S_2 = \sum_{j=1}^{n} Y_j$, and $0 \leq Y_j \leq D_n$, where $D_n \sim h_x^{-1}$. Let E_2 be the event such that $S_2 < -\frac{1}{2}\tilde{f}_{\sigma}(x)$. Then by applying Hoeffding's inequality,

$$\mathbb{P}(E_2) \leq \mathbb{P}\left\{ |\bar{Y} - E(\bar{Y})| \geq \frac{1}{2}\tilde{f}_{\sigma}(x) \right\}$$
$$\leq 2 \exp\left\{ -\frac{2n^2 \{\frac{1}{2}\tilde{f}_{\sigma}(x)\}^2}{nD_n^2} \right\} = O(n^{-\epsilon})$$

for some $\epsilon > 0$. Note that on event E_2 , we have

$$\mathbb{E}_{\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\sigma}^2}\left\{ (\hat{\delta} - \tilde{\delta})^2 \mathbb{1}_{E_2} \right\} = O(C_n^2)O(n^{-\epsilon}) = o(1).$$

Therefore, we only need to focus on the event E_2^C , on which we have

$$\tilde{f}_{\sigma}(x) + S_2 \ge \frac{1}{2}\tilde{f}_{\sigma}(x).$$

It follows that on E_2^C , we have

$$\{S_2/(\tilde{f}_\sigma(x)+S_2)\}^2 \le 4S_2^2/\{\tilde{f}_\sigma(x)\}^2.$$

Therefore the first term on the right of (B.8) can be controlled as

$$\mathbb{E}_{\boldsymbol{X},\boldsymbol{\mu},\boldsymbol{\sigma}^{2}}\left(\mathbbm{1}_{E_{2}^{C}}\cdot\int\int_{\mathbb{R}_{x}\cap\mathbb{Q}_{x}}\left\{\frac{\tilde{f}_{\sigma}^{(1)}(x)}{\tilde{f}_{\sigma}(x)}\right\}^{2}\left\{\frac{S_{2}}{S_{2}+\tilde{f}_{\sigma}(x)}\right\}^{2}f_{\sigma}(x)dxdG_{\sigma}(\sigma)\right)$$
$$= O(C_{n}^{\prime 2})O(n^{-(\epsilon-2\epsilon^{\prime})}) = O(n^{-\eta})$$

for some $\eta > 0$. Hence we show that the first term of (B.8) is vanishingly small.

For the second term in (B.8), we need to evaluate the variance term of S_1 , which can be similarly shown to be of order $O(n^{-\eta})$ for some $\eta > 0$. Following similar arguments, we can prove that the expectation of the second term in (B.8) is also vanishingly small, establishing the desired result. \Box

Proportion of large schools. Bolded terms represent best performances.								
Method	2002-	2003-	2004-	2005-	2006 -	2007-	2008-	
	2004	2005	2006	2007	2008	2009	2010	
Naive	0.10	0.11	0.12	0.12	0.12	0.14	0.16	
NEST	0.20	0.19	0.26	0.26	.29	0.25	.24	
TF	0.13	0.16	0.15	0.18	0.19	0.24	0.29	
Scaled	0.11	0.12	0.12	0.12	0.12	0.17	0.18	
2 Group	0.13	0.15	0.15	0.18	0.18	0.25	0.29	
3 Group	0.13	0.15	0.15	0.16	0.18	0.22	0.26	
4 Group	0.13	0.15	0.15	0.17	0.18	0.25	0.27	
5 Group	0.13	0.15	0.15	0.17	0.17	0.26	0.29	
Group L	0.13	0.16	0.17	0.18	0.24	0.29	0.28	
SURE-M	0.16	0.17	0.19	0.21	0.24	0.34	0.28	
SURE-SG	0.16	0.17	0.18	0.21	0.22	0.32	0.26	

TABLE !	5
---------	---

of large schools. Bolded terms represent best performances.

APPENDIX C: TABLE OF LARGE SCHOOL PROPORTIONS

Table 5 shows three–year windows for the proportion of large schools selected into the 100 schools by each method. The three–year windows range from 2002 - 2004 to 2008 - 2010. NEST is among the closest to giving large schools 25% representation for 6 of 7 years.

401W BRIDGE HALL DEPARTMENT OF DATA SCIENCES AND OPERATIONS MARSHALL SCHOOL OF BUSINESS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA 90089 E-MAIL: luella.fu.2017@marshall.usc.edu gareth@marshall.usc.edu wenguans@marshall.usc.edu