
Stable Adaptive Model Selection

Luella Fu and Yingying Fan ∗

May 21, 2014

Abstract

Large scale data analysis has stimulated the developments of various sparse

modeling techniques. With high dimensionality but limited sample size, variables

with very weak signal strength are indistinguishable from noise. In real application,

a stable method that removes noise and very weak variables from the final model

can improve model stability and boost the significance of relatively important vari-

ables. The tasks of selecting variables and evaluating their importance are typically

conducted separately. Yet, it is desirable to use a stabilizing method that performs

model selection while adaptively removing noise and very weak variables. In this

paper, we suggest the stable adaptive model selection that automatically performs

variable selection and significance selection together. It is computationally efficient

and, under certain conditions, theoretically proven to enjoy the variable selection

sure screening property. The advantages of our method are supported by simulation

and real data examples.

Keywords: Greedy algorithm; High dimension; Model selection; Sparse modeling; Threshold

1 Introduction

Model selection and estimation procedures are widely used on high dimensional data to

produce sparse models. Particularly fruitful are regularization methods. Amongst these,

∗Luella Fu is PhD candidate, and Yingying Fan is Assistant Professor, Data Sciences and Operations

Department, Marshall School of Business, University of Southern California, Los Angeles, CA 90089 (e-

mails: luellafu@usc.edu and fanyingy@marshall.usc.edu). This work was supported by NSF CAREER

Award DMS-1150318 and USC Marshall summer research funding.

1

the most popular and well studied is the L1 regularization method Lasso (Tibshirani,

1996). As summarized by Zou and Zhang (2009), research shows that Lasso tends to

select a larger model than the true one. Many of the selected variables are either noise

variables or variables with very weak signal strength. Indeed, with high dimensionality

but limited sample size, variables with very weak signal strength are indistinguishable

from noise. In addition, for variables selected by Lasso, it is often the case that many

of the estimated regression coefficients are close to zero. A model that includes a large

number of variables with nearly-zero regression coefficients is undesirable since it increases

model complexity, makes the model difficult to interpret, and causes large variations in

estimation and prediction. Thus, an important and interesting question is how to remove

these noise variables and very weak variables from the selected model.

Variable significance has been less explored than other aspects of high dimensional

sparse modeling, resulting in a smaller literature. Wasserman and Roeder (2009) apply

a t-test on the model resulting from a multi-stage procedure, which splits and handles

data in three parts, to eliminate unimportant variables. Meinshausen and Bühlmann

(2010) propose a general subsampling method in which variables that frequently appear

are chosen, increasing the probability of selecting significant variables and decreasing the

probability of selecting noise variables. Minnier et al. (2011) estimate covariance structure

for concave penalty estimators and construct confidence intervals using a perturbation

method. Bühlmann (2012) takes advantage of the low variance of the ridge estimator and

uses a bias-corrected version of it to conduct hypothesis testing for high dimensional linear

models. Zhang and Zhang (2013) develop the low dimensional projection estimator which

produces confidence intervals for coefficients. Recently, Lockhart et al. (2013) propose

the covariance test statistic for Lasso, which tests the significance of the covariates that

enter the current Lasso model along the Lasso solution path.

It is clear from the variety and ingenuity in these approaches that important variables

can be assessed in numerous ways. One more idea would be to enfold the selection of

significant variables along with model selection into the same procedure. Particularly,

compare the advantages of an integrated model to a two-stage method that first selects

variables and then evaluates variables’ importance. Many variables in the final set may

have nearly-zero coefficients, which can increase model instability and cause difficulty

in evaluating the significance of truly important variables. More importantly, the two-

2

stage procedure is not adaptive; in the model fitting stage, over the course of generating

a sequence of sparse candidate models, the significance of variables can change. Noise

covariates may enter. An adaptive method could remove such noise covariates and boost

the significance of some relatively weak but still important covariates.

We offer a greedy procedure with these desirable adaptive characteristics. This

method, stable adaptive model selection (SAMS), modifies least angle regression, also

known as LARS (Efron et al., 2004), to select important variables. In the original LARS

algorithm, the covariate with the highest correlation to the residual enters the model

first. Its estimate is increased to the point at which another covariate outside the model

has equal correlation to the residual. Then, that covariate enters the model, and the

process repeats. SAMS changes LARS by halting LARS once it produces a coefficient

that exceeds a set threshold. This threshold acts as a critical value. Using the selected

covariate, SAMS then produces a regression coefficient using ordinary least squares (OLS)

and thresholds the result. SAMS iterates the procedure. As SAMS iterates, it repeatedly

thresholds the model estimates so that noise or very weak variables are excluded.

“Stable” in stable adaptive model selection comes from SAMS’s ability to correct for

and eliminate noise variables. Though a noise variable may be highly correlated to a true

covariate and enter LARS early on, the true covariate can overtake the false one before any

estimate reaches the threshold. As a result, only the true regressor enters the model. Even

when a noise variable appears strong enough to enter during the modified LARS stage of

SAMS, it can appear weak in the presence of true variables during ordinary least squares

estimation. SAMS will therefore threshold out the spurious variable. Consequently,

SAMS enjoys great stability even when handling many noisy or very weak covariates.

Stable adaptive model selection shares common ideas with the methods proposed in

Wasserman and Roeder (2009) and in van de Geer et al. (2011). Wasserman and Roeder

(2009) consider using thresholded forward stepwise regression to select variables and

ordinary least squares to produce estimates. These estimates are then used for inference.

The authors show that this procedure can achieve model selection consistency under

certain circumstances. van de Geer et al. (2011) study a method in which thresholded

Lasso variables are refit once using OLS. The authors also prove that this thresholded

procedure can achieve variable selection consistency.

SAMS is similar to both methods in that it refits variables using ordinary least squares

3

after thresholding. It is additionally similar to Wasserman and Roeder (2009) in that it

contains a cautious step to check if variables are truly non-zero. One difference is that

these methods are procedures that handle variable selection and estimation separately.

In SAMS, these tasks participate in one feedback loop. The key distinction is that SAMS

adaptively adds, estimates, and thresholds out variables. It is therefore a more dynamic

procedure that adjusts the model to screen out noise variables. In this spirit, SAMS

is similar to correlation pursuit (Zhong et al., 2013), which applies an adaptive greedy

method to a different model setting.

As a greedy algorithm, SAMS has additional advantages. It terminates LARS prema-

turely and is therefore computationally fast. The early stopping feature quite naturally

also prevents overfitting. This property is especially useful for data sets with small num-

bers of observations that cannot be easily cross-validated. We additionally prove that

under certain conditions, SAMS is a method that automatically produces a sequence of

sparse models with true covariates. In fact, because SAMS is a thresholding procedure,

SAMS falls under the theoretical framework detailed in Fan and Lv (2013).

The theory adds to a still small literature on the statistical properties of greedy meth-

ods. Works which explore the properties of classical forward stepwise algorithms include

Tropp (2004), Donoho and Stodden (2006), and Wang (2009). Additional modifications

to and theory for greedy estimators are given in Zhang (2008), Barron et al. (2008), and

Ing and Lai (2011).

In fact greedy methods continue to be explored as useful tools for a variety of high

dimensional settings. Yuan and Zou (2009) build upon LARS to create a generalized

algorithm while Zhong et al. (2013) advance sufficient dimension reduction by applying

an iterative stepwise procedure. Also, Li (2006) implements a greedy method to ame-

liorate the curse of high dimensionality and perform multi-class classification. Here we

offer SAMS, which is also a greedy method, but one which is stable in high dimensions,

adaptive, and performs model selection and importance selection simultaneously.

We lay out the algorithm in the next section. In section 3, we detail its theoretical

properties. Then, in section 4, we use simulation to demonstrate properties of stable

adaptive model selection and give results of applying SAMS to spam detection. We place

technical details in the appendix.

4

2 Stable Adaptive Model Selection

Consider the linear regression model

y = Xβ0 + ε, (1)

where y is the n-vector of response, X = (x1, · · · ,xp) is the n × p design matrix, β0

is the p-vector of regression coefficients, and ε is the n-vector of model error which is

independent of X. We assume that β0 is sparse and has only s = ‖β0‖0 nonzero elements.

Here, both s and p can diverge with n but we suppress their dependence if no confusion.

We next propose a greedy algorithm and give an example to illustrate how it works.

2.1 SAMS algorithm and a broad overview

Like bidirectional elimination, stable adaptive model selection performs three tasks: it

adds variables, estimates them, and if any previously added variables become insignif-

icant, drops them. These three tasks are handled by two processes: thresholded least

angle regression performs variable selection, and thresholded ordinary least squares per-

forms estimation and variable elimination. Two key aspects of the algorithm are how it

adaptively works with residuals and how the threshold τ serves as a test of significance.

In fact, τ is the only tuning parameter for the algorithm.

SAMS first brings variables into the model using thresholded LARS. This modified

least angle regression procedure always uses the residuals produced by SAMS at the

previous step as the dependent variable: rk = y−Xβ̂
(k−1)

, where y is the original response

variable, X is the predictor vector, and β̂
(k−1)

is the previous estimated coefficient vector

from SAMS. Otherwise, thresholded LARS differs from LARS in only one way: the

thresholded algorithm stops when it finds the estimate whose magnitude first equals a

predetermined threshold τ . This variable is then selected into the SAMS model.

Next, SAMS estimates the coefficients of variables chosen by thresholded LARS and

drops weak ones by using thresholded OLS. Ordinary least squares provides estimates

using the dependent variable y, but the τ threshold is incorporated so that should any

estimate fall below τ , the corresponding variable is taken out of the SAMS model. This

model produced by thresholded least squares regression gives us the β̂ estimates. We use

these to form the residuals r = y −Xβ̂ in the next iteration, which begins again from

thresholded least angle regression.

5

We present the algorithm after explaining some notation. Variables selected into

the SAMS model are active variables. They are in the SAMS active set, denoted by

A. These active variables are separate from the active variables selected into the LARS

model during the thresholded LARS step, so we denote the LARS active variables by

B. Additionally, I is the set of variables not in the LARS active set. The threshold is

τ . The coefficients estimated by SAMS are represented by the vector β̂ = (β̂1, · · · , β̂p)T .

The vector y − Xβ̂ forms the residuals r. The coefficients estimated by least angle

regression and ordinary least squares that run inside SAMS are, respectively, the vector

β̃ = (β̃1, · · · , β̃p)T and the vector β̆ = (β̆1, · · · , β̆p)T .

For a given set A, let XA be the submatrix formed by columns of X with indices in

A, and let βA be the subvector formed by active coordinates of β. For a given vector of

measured responses y and data matrix X, the SAMS algorithm is described below.

SAMS Algorithm

0. Initialize variables for SAMS:

the active set is the empty set, A = ∅;

the SAMS coefficients are zero, β̂ = 0;

and the residuals are the response vector, r = y.

1. Thresholded LARS

(a) Initialize variables for least angle regression:

the response variable is the residual SAMS vector r,

while the LARS active set, inactive set, and estimated vector are the usual

B = ∅,

I = {1, · · · , p},

and β̃ = 0.

(b) Run least angle regression until one LARS active coefficient first reaches the

threshold:

|β̃i| = τ for some i ∈ B.

(c) If least angle regression reaches the full OLS solution, skip to step 5.

(d) Else, add the variable that first reached the threshold to the SAMS active set:

A ← A∪ i;

6

I ← I\i.

2. Thresholded OLS

(a) Get least square estimate β̆ by regressing y on the set of active variables XA.

(b) Move variables with estimates below the threshold out of the active set.

For i : |β̆i| < τ , update A ← A\i and I ← I ∪ i.

(c) If any variables were dropped in (b), update the OLS estimate:

β̆ = y ∼ XA.

3. Update the SAMS estimate and residual:

β̂ = β̆;

r = y−XAβ̂A.

4. If after steps 1 and 2, new variables have been added to A, repeat from step 1.

5. Output the SAMS estimate, β̂.

2.2 An example using stable adaptive model selection

We use a simple example to demonstrate how SAMS estimates and returns important

variables. We use the notation from the algorithm. Say in a set of ten covariates that

X1, X3, and X5 are the true variables. Let the true coefficients of these variables be

respectively (0.8,−0.5, 0.7). Then ideally τ should be less than but close to 0.5. For now,

let us set τ at 0.3 for illustrative purposes. Our initial estimate, β̂, is the null model with

0 in all ten entries. Therefore, the SAMS active set A is ∅.

Each time thresholded LARS runs, its coefficients β̃ begin as the 0 vector. Also,

since our method works with the residual r, we let the first residual vector be r = y.

LARS initially increases the coefficient estimate of X1. Say it estimates β̃1 = 0.1. Then

it picks up X5 as well and increases both coefficients to β̃{1,5} = (0.2, 0.1). Next, it adds

X3 so that β̃{1,3,5} = (0.5,−0.2, 0.4). Our method departs from LARS here. Instead of

estimating more variables as least angle regression would, SAMS realizes that both β̃1

and β̃5 exceed 0.3. It then finds the β̃ where the first variable, X1, passed the threshold

and returns the other variables to 0. After this process, we obtain β̃{1,3,5} = (0.3, 0, 0).

Upon discovering that X1 is the first variable to exceed τ , SAMS adds the index 1 to the

active set A.

7

In what follows, we disregard the LARS estimates. Instead, we focus on the active

variables in A for thresholded ordinary least squares. OLS regresses r on XA. This is

currently equivalent to regressing y on X1. The estimate is β̆1 = 0.5. Since the size of the

estimate lies above τ , it need not be thresholded back to 0. If the OLS estimate did fall

below 0.3, it would drop out of the active set. This thresholded ordinary least squares

estimate is taken as the SAMS estimate β̂.

This first iteration updated theA set and β̂ parameters, so that the residual is updated

to r = y − 0.5x1. Using this new r as the response, thresholded least angle regression

begins anew. The algorithm repeats.

After just three iterations, our Theorem 2 suggests that SAMS will recover the three

true variables so that A = {1, 3, 5}. SAMS produces the estimates β̂A = (0.8,−0.5, 0.7).

In general, we do not expect a perfect match to the true coefficients, but we simplify

estimates for the example.

Then, it is interesting to consider what SAMS does after only noise variables are left.

The algorithm returns to thresholded least angle regression. Thresholded LARS starts

afresh, using as its response variable the updated residual containing only noise. Theo-

retically, both noise variables and active variables in A are independent of the residual

once the true variables have been extracted. As a result, LARS is both unlikely to pick

a variable already in A and also unlikely to find estimates with magnitude larger than

τ . Thus, SAMS will terminate and take the vector of estimates β̂A from the previous

ordinary least squares step as its final solution. The early stopping property of SAMS

will be formally discussed in Theorem 1.

2.3 How to choose and interpret the threshold

So far we have assumed that we know which threshold τ to use. Though some instances

exist when this is the case, we otherwise choose τ through validation. After running

SAMS on a training set over a grid of possible thresholds to produce different sets of

estimated β̂, we choose the vector of estimates which produces the smallest prediction

error on a validation set. In this way, we tune τ for our Section 4 simulations and Section

5 data application. The cross validation method can also be used to tune τ .

A potential problem arises with tuning: SAMS becomes an algorithm with three

nested loops. SAMS iterates as a loop, LARS iterates as a loop within SAMS, and

8

now for each τ we additionally re-run SAMS. Though it may appear computationally

daunting, a few factors speed up performance. Least angle regression is already a quick

algorithm because of its geometric properties. SAMS additionally halts LARS early using

τ . The grid for τ also does not need to be very fine because the threshold is robust. We

say robust in the sense that τ is equally effective anywhere between the smallest support

coefficient and the noise level. In our example, we set τ to 0.3 but we could have set it

slightly below 0.3 or up to 0.5 without affecting the results.

This threshold is the only tuning parameter in our model and its interpretation de-

serves some mention. The role τ plays is like that of a critical value in traditional

hypothesis testing. Estimates above τ are judged significant and those below τ are con-

sidered the mere byproduct of random fluctuations in data. In our example, τ = 0.3

means that it is sufficiently unlikely that any estimate above 0.3 would be due to noise

alone. The threshold τ also gives us a sense of the size of regressors’ effects on y. The

tuning parameter is thus directly related to the estimates which we seek to understand.

Through the example, we suggested that stable adaptive model selection has desirable

properties. We indicated that it adds true variables first and terminates immediately after

estimating all significant variables. We follow up with theoretical justification to explain

why SAMS should perform in these desirable ways.

3 Theoretical properties

In this section, we present theoretical results which can provide insights and help us

understand the SAMS method. Although SAMS is built on the LARS algorithm, to

simplify the presentation we consider a sightly different setting and prove our theorems

based on the Lasso method. Without loss of generality, we standardize the columns of

X to have L2-norm equal to
√
n. The Lasso method estimates the true coefficient vector

β0 by minimizing the following regularization problem

Ln(β;λ) =
1

2n
‖y−Xβ‖22 + λ‖β‖1, (2)

where λ ≥ 0 is the regularization parameter controlling model complexity. All theoretical

results are conditional on the design matrix X.

As in Fan and Lv (2013), we introduce the definition of the robust spark.

9

Definition 1. The robust spark κc of the n×p design matrix X is defined as the smallest

possible positive integer such that there exists an n × κc submatrix of n−1/2X having a

singular value less than a given positive constant c.

The robust spark κc is always a positive integer no larger than n + 1 and can be

some large number diverging with n. In fact, it has been proven in Fan and Lv (2013)

that if the design matrix X is generated from a Gaussian distribution, then with asymp-

totic probability 1, there exist positive constants c and c̃ such that the robust spark

κc ≥ c̃
√
n/(log p). We make the following assumption on the true model size s and the

threshold level τ .

Condition 1. It holds that s = o(n/ log p) and s < κc for some constant c > 0. The

threshold τ is chosen such that τ
√
n/(s log p)→∞.

Let λ0 = c0
√

(log p)/n with c0 being some positive constant. Define the event

E1 = { 1

n
‖XTε‖∞ ≤ λ0}. (3)

We make the following assumption on the model error distribution.

Condition 2. It holds that P (E1) = 1 − O(p−c1) for some positive constant c1 that can

be sufficiently large for large enough c0 .

Condition 2 was also imposed in Fan and Lv (2013). As discussed therein, it holds

for Gaussian, bounded, or light-tailed error distributions, with no or mild conditions on

design matrix X.

For a given regularization parameter λ > 0, denote by β̂
λ

a global minimizer of (2). In

implementation, the Lasso solution is calculated over a range of regularization parameters

λ ∈ [λmin, λmax], which creates a sequence of candidate models. The upper bound λmax

corresponds to the sparsest solution and can be chosen as a large enough number such

that β̂
λmax

= 0, and the lower bound λmin corresponds to the most dense solution β̂
λmin

in

this range. The following theorem describes that if the true regression coefficient β0 = 0,

then the active set selected by SAMS is empty with overwhelming probability, which is

consistent variable selection.

Theorem 1. Assume that Conditions 1 and 2 hold and the true regression coefficient

vector β0 = 0. If λmin is chosen so that the corresponding Lasso solution satisfies

10

‖β̂
λmin‖0 ≤ min{κc, c2τ 2n/(4c20 log p)}, then with probability at least 1 − O(p−c1), for all

λ ≥ λmin, we have β̂
λ

= 0 and thus the active set of SAMS is always empty.

Theorem 1 also indicates that our algorithm stops automatically when all true vari-

ables are recruited into the model. To understand this, note that in each step of the

algorithm, we work with residuals. As remarked in Bühlmann and van de Geer (2011)

(section 2.5), the Lasso estimated model with the regularization parameter λ on the order

of
√

(log p)/n has the variable screening property under some conditions on the design

matrix and the signal strength, where the variable screening property means that the

Lasso estimated model supp(β̂
λ
) includes the true model supp(β0) with overwhelming

probability. If after some steps all true variables are included in the model, then the

residual from the least squares fit is uncorrelated with any predictor. So in some sense,

with the residual as the new response, the underlying population model reduces to a

linear regression model with β0 = 0. Then according to Theorem 1, with overwhelming

probability, our algorithm will not select any additional variables and therefore stops

automatically.

The constraint in Theorem 1 on ‖β̂
λmin‖0 is equivalent to assuming that the minimum

regularization parameter λmin should not be too small. We remark that even for a very

small regularization parameter, SAMS can still enjoy the property of model selection

consistency. To understand this, note that if by chance, some noise variable enters the

Lasso solution path and has a coefficient exceeding τ , then it will enter the active set.

However, thanks to the least squares refit step, the refitted coefficient of this noise variable

will still be less than τ with asymptotic probability one. Thus, it will be removed from

the active set with asymptotic probability one and the active set remains empty.

We next show that the first variable selected by the algorithm is the true one with

significant probability. For any set S $ {1, · · · , p}, let XS be the submatrix formed by

columns of X in S. Define the event

E2 = {‖(XT
S0XS0)

−1XT
S0ε‖∞ ≤ δn,

1

n
‖XT
Sc0

(In −PS0)ε‖∞ ≤ λ0}, (4)

where δn = c2
√

(log n)/n with c2 > 0 some constant, In is the n×n identity matrix, and

PS0 = XS0(X
T
S0XS0)

−1XS0 is the projection matrix. We need the following condition on

(4).

Condition 3. It holds that P (E2) > 1− o(n−c3) with c3 > 0 some constant.

11

Similar to Condition 2, Condition 3 holds for bounded or Gaussian errors without any

extra assumptions and holds for unbounded non-Gaussian errors with mild assumptions

on the design matrix. See the appendix for more detailed discussions on Condition 3.

We further introduce the stability neighborhood as

Nδn(β0) = {β ∈ Rp : supp(β) = supp(β0), ‖β − β0‖∞ ≤ δn}.

Then Nδn(β0) defines a neighborhood around the true regression coefficient β0. For each

β1 ∈ Nδn(β0) and each λ > 0, define the deterministic vector

β∗(β1, λ) = arg min{(2n)−1‖Xβ1 −Xβ‖22 + λ‖β‖1}. (5)

Then β∗(β1, λ) is the population version of the solution to (1) when the underlying true

regression coefficient is β1. The intuition for defining Nδn(β0) and β∗(β1, λ) is that a

good variable selection procedure should enjoy the stability property and thus β∗(β1, λ)

and β∗(β0, λ) are expected to be close if β1 and β0 are close to each other.

For a given threshold τ , define λ∗(β1, τ) as the largest λ such that ‖β∗(β1, λ)‖∞ just

increases to τ . For the ease of presentation, we drop the dependence of λ∗(β1, τ) on β1

and τ and write it as λ∗ whenever there is no confusion. For each β1 ∈ Nδn(β0), define

A∗(β1, λ
∗) = supp

(
β∗(β1, λ

∗)
)
.

Then by the definition of λ∗, the set A∗(β1, λ
∗) has at least one element. Define

S0 = supp(β0)

as the support of the true variables. We make the following assumption on the stability

property of the population version of the algorithm.

Condition 4. For any β1 ∈ Nδn(β0), the vector β∗(β1, λ
∗) = (β∗1(β1, λ

∗), · · · , β∗p(β1, λ
∗))T

satisfies that |β∗j (β1, λ
∗)| ≤ (1 − c4)τ if j ∈ Sc0 for some constant c4 > 0 independent of

β1. In addition, for every β1 ∈ Nδn(β0), it holds that |A∗(β1, λ
∗)| < κc, where κc is the

robust spark of the design matrix X. Moreover, |Sc0 ∩ A∗(β1, λ
∗)| <

(
cc4τ/λ0

)2
.

Condition 5. It holds that τ−1 minj∈S0 |β0j| → ∞.

We remark that the order of λ∗ defined above is generally greater than O(
√

(log p)/n).

To understand this, note that under the restricted eigenvalue condition, using similar

arguments as in Bickel et al. (2009) it can be proved that

‖β1 − β∗(β1, λ̃)‖2 ≤ O(
√
s(log p)/n)

12

for the regularization parameter λ̃ of the order
√

(log p)/n. Moreover, since β1 ∈ Nδn(β0)

with δn = c2
√

(log n)/n, it follows that β1 also satisfies the minimum signal strength

condition τ−1 minj∈S0 |β1j| → ∞. The above two results together with Condition 1 ensure

that both ‖β∗(β1, λ̃)‖∞ and ‖β1‖∞ have orders larger than τ . Thus, λ∗ = λ∗(β1, τ)

should be of an order greater than λ̃ = O(
√

(log p)/n). The exact order of λ∗(β1, τ) can

be obtained in the orthogonal design case, where XTX = nIn. In this case, it can be

derived that

β1A∗ = sgn
(
β∗A∗(β1, λ

∗)
)
◦
(∣∣β∗A∗(β1, λ

∗)
∣∣+ λ∗

)
,

where ◦ stands for the Hadamard product of two vectors. Thus, the value of λ∗ is

maxj∈S0 |β1j| − τ , which is of a order larger than O(
√

(log p)/n). Condition 4 puts

constraints on the population solution β∗(β1, λ
∗) for all parameters in the neighborhood

Nδn(β0), and thus it is on the stability of the variable selection procedure.

Note that the LARS algorithm, which works with correlation, can be used to solve the

Lasso problem (5). Variables in the active set of LARS have larger correlations with the

response than variables outside of it. From the point of view of the LARS algorithm, as

τ → 0, the above Condition 4 can be understood as the correlation condition. Intuitively,

it assumes that the response Xβ1 has larger correlations with some signal covariates than

with any of the noise covariates so that some signal covariates enter the model ahead of

noise covariates. In general when τ > 0, Condition 4 is weaker than the correlation

condition. It accommodates the case where some noise variables enter the solution path

first but their coefficients increase to τ slower than those for signal variables afterwards.

Condition 6. It holds that

sup
β1∈Nδn (β0)

{
1

λ∗
max
j∈A∗c

∣∣n−1xTj X(β∗(β1, λ
∗)− β1)

∣∣} ≤ 1− c5,

where c5 ∈ (0, 1) is some constant independent of β1.

Condition 6 is a deterministic condition on the population solution β∗(β1, λ
∗). It is a

stronger version of the KKT condition. To understand this, note that by the definitions

of λ∗ and β∗(β1, λ
∗) and the KKT conditions, we obtain that for every β1 ∈ Nδn(β0),

max
j∈A∗c

∣∣∣n−1xTj X
(
β∗(β1, λ

∗)− β1

)∣∣∣ ≤ λ∗.

Condition 6 assumes that this result holds uniformly over all β1 ∈ Nδn(β0) with a slightly

smaller upper bound.

13

We also need the following condition, which is on the collinearity level of predictors.

Condition 7. It holds that

sup
β1∈Nδn (β0)

{
1

λ∗(β1, τ)

√∣∣Sc0 ∩ A∗∣∣∥∥∥n−1XT
A∗cXA∗

∥∥∥
∞,2

}
= o
(
1/λ0

)
,

where ‖ · ‖∞,2 is the norm defined as ‖A‖∞,2 = sup{‖a‖2=1} ‖Aa‖∞ for matrix A and

vector a of appropriate dimensions.

As discussed above, when the minimum signal condition (Condition 5) is satisfied, the

regularization parameter λ∗ is of an order larger than λ0 = c0
√

(log p)/n. If the active

set A∗ = A∗(β1, τ) in the population algorithm contains none of the noise variables,

then Sc0 ∩ A∗ = ∅ and Condition 7 is satisfied automatically; if A∗ contains some noise

variables, then the cardinality |Sc0 ∩ A∗| is nonzero and Condition 7 restricts how fast

sample correlations among covariates can grow with dimensionality.

As with Condition 5, Conditions 6 and 7 are for all β in Nδn(β0), and thus they are

about the stability of the population algorithm as well.

Proposition 1. Assume Conditions 1–7 hold and λ∗(β1, τ)/λ0 → ∞ for every β1 ∈

Nδn(β0). Then with probability at least 1−o(n−c3), where c3 is defined in Condition 3, as

λ decreases to λmin, the first variable entering the model using SAMS belongs to set S0.

Although Proposition 1 is about the first variable recruited by our algorithm, it has

deeper implications. Just notice that in each step, SAMS works with residuals. By treat-

ing the current residuals as the new response variable, if the model satisfies Conditions

2–7, then Proposition 1 guarantees that the next variable entering the active set will be

a true variable (i.e., variable in S0) with asymptotic probability one.

We formally characterize the aforementioned result in the next theorem. For any set

S $ {1, · · · , p}, let βS be the subvector formed by entries of β in S. Then our model

can be written as

y = PA(XAβ0,A + ε) + (In −PA)(XA1β0,A1
+ ε), (6)

where PA = XA(XT
AXA)−1XT

A is the projection matrix and A1 = Ac ∩S0. If the current

active set is A, then the response will be regressed on variables in A, and the residual

vector becomes

ỹ = (In −PA)y = (In −PA)XA1β0,A1
+ (In −PA)ε.

14

Define a (p−|Ac|)-dimensional vector β̃0 with β̃0A1
= (XT

A1
XA1)

−1XT
A1

(In−PA)XA1β0,A1

and β̃0Ac1 = 0. It is easy to check that the above residual vector becomes

ỹ = XA1β̃0,A1
+ ε̃, (7)

where ε̃ = (In − PA1)(In − PA)XA1β0,A1
+ (In − P A)ε is the new model error. Then

the new model (7) has the same form as the original model (1) with different underlying

regression coefficient vector and model error vector.

Condition 8. For any set A ⊂ S0, it holds that ‖n−1XT
Sc0

(In−PA1)(In−PA)XA1β0,A1
‖∞ ≤

c6
√

(log p)/n, where c6 > 0 is some constant.

Theorem 2. Assume ε ∼ N(0, σ2In) with σ2 as the variance of model error. For a

given active set A $ S0, assume Condition 8 holds and Conditions 1 and 4–7 hold with

β0 being replaced with β̃0 defined in model (7). Then with probability at least 1− o(p−c7),

the next variable that enters the active set using SAMS belongs to set S0 \A, where c7 is

some positive constant.

The following corollary on model selection consistency follows immediately from The-

orem 2.

Corollary 1. Assume Conditions of Theorem 2 hold for every active set A $ S0. If

the number of true covariates s = ‖β0‖0 is finite, then SAMS has the property of model

selection consistency, i.e., the final set of variables selected by SAMS is equal to the true

set S0 with asymptotic probability one.

4 Numeric Studies

In this section, we explore how theoretical properties play out in implementation on both

simulation and real data. When SAMS runs according to the algorithm of Section 2, it

performs well on large sample sizes but deteriorates as n becomes small. For small sample

sizes, we modify the previously discussed version of SAMS.

4.1 Implementation

In implementation, we continue to use the residual r = y−XAβ̂A as the response vector

for thresholded LARS, but each time we re-run thresholded LARS, LARS no longer

15

needs to begin from the empty model. Instead, the initial vector of LARS estimates

picks up from the last estimates of SAMS: we let LARS start at β̃ = β̂. We also let

the corresponding initial active set of LARS begin with the variables which are already

active in SAMS: initial B = A. Accordingly, the inactive LARS set begins with I = Ac.

This version of SAMS performs similarly to the original version of SAMS under large

sample sizes and benefits from additional stability as the number of observations shrinks.

This modification makes SAMS more adaptive because thresholded LARS makes use of

information from the previous thresholded OLS step. Since it is a more sophisticated

algorithm that, in the spirit of stable adaptability, is suited to both large and small

sample sizes, we use this version in the following simulations and data analysis.

4.2 Simulation

4.2.1 Settings

We examine how stable adaptive model selection performs in two settings. In one envi-

ronment, we assume noise in the data is light-tailed, and we generate Gaussian errors. In

the second setting, we challenge our method’s ability to detect signals from much noisier

data by drawing errors from a t-distribution.

We first describe the set-up that both environments share. For both settings, we gen-

erate 1,000 regressors using a multivariate normal distribution, N(0,Σ). The correlation

Σjk between any two regressors Xj and Xk is 0.5|j−k| so that, as the distance between

Xj and Xk increases, the correlation tapers off. We use a linear combination of only

ten out of 1,000 variables to generate y so that the vast majority of regressors are noise.

We index the true variables at every third position. Thus, the true variables’ indices

form the support S0 = {1, 4, 7, · · · , 25, 28}. The true coefficient vector, β0, is non-zero

only on the support, and at these locations, we place three small and seven large values:

βS = {1,−0.5, 0.05, 0.7,−1.2, 0.01,−0.9,−0.01, 0.5, 0.55}.

Then, we generate the data from model (1). The dimensionality p is fixed at 1,000

for all our simulations, while the sample size n varies in different cases. The distribution

of model error ε varies according to the descriptions given in the next two subsections.

We use one model fitting procedure for all simulations. In the training stage, we

generate y and X. Then, on this training data, we run SAMS on a sequence of τ

16

thresholds. We select τ to minimize prediction error on a validation set that has the same

characteristics as the training set. The τ produced represents the standard of significance

for the model. Once we select τ , we have a final model and calculate performance measures

using independently generated test data.

In each simulation, along with our own method, we run five competing methods

and the oracle procedure. Of the competing methods, three are the greedy algorithms:

forward selection (forward), adaptive forward-backward greedy algorithm (FoBa), and

least angle regression (LARS). The other two approaches are regularization methods:

Lasso and adaptive Lasso (Ada-Lasso)(Zou, 2006). We include adaptive Lasso because of

its theoretical connection to Lasso. To help implement these methods, we use R packages:

foba to perform forward and FoBa; and lars to run LARS and Lasso. We develop our own

implementation of adaptive Lasso, in which we tune three parameters: γ = {0.5, 1, 2}

as in Zou (2006); the initial weights ŵ; and λn for the final adaptive Lasso coefficients.

Lastly, we use the oracle procedure, in which the oracle already knows the sparse set

of variables used to generate y. Consequently, the oracle procedure is an ordinary least

squares estimation of y on only XS , the n× 10 data matrix with the true covariates.

We use standard performance measures: prediction error (PE), L1-loss, L2-loss, false

positives (FP), and false negatives (FN). Since weak signals are particularly difficult to

detect, we present the last measure as two kinds of false negatives: FN-strong for the

seven large, or strong, coefficients and FN-weak for the three small, or weak, coefficients.

This separation helps explain interesting trade-offs in how these methods perform.

4.2.2 Robust performance under normal errors

In the first setting, we draw errors independently and identically distributed from a

normal distribution with mean of 0 and variance of 0.42. We generate n = 80 observations

and then reduce n to 60. These sets of observations demonstrate how methods compare

against one another even as available data decreases.

The results are in Table 1. Table 1 tends to group the methods into three collections

based on their performance: in the first group are forward, FoBa, and SAMS; in the

second group are LARS and Lasso; and in the third group is adaptive Lasso alone. As

the data shrinks from 80 to 60 observations, the trend suggests that SAMS becomes

better at picking out a much sparser set than the other members of the first group.

17

Another clear pattern we see is that the prediction error for SAMS increases slower than

the errors for other methods. More broadly, for all measures except false negatives, and

for both n, SAMS possesses the lowest mean values. Also, for both values of n and for

all performance measures, SAMS has the smallest standard errors.

4.2.3 Impact of heavy-tailed errors on accuracy and stability

Because real data is usually noisy, we create a second simulation to examine how SAMS

performs on data with heavier tails. We let ε follow a t-distribution with ten degrees

of freedom. Though we perform analysis on a sequence of n similar to that of the prior

setting, we here describe only the case where n = 60. The patterns for all n mimic

those of the Gaussian setting, so we summarize performance using the most severe case.

Additional tables with the omitted results can be requested from the authors.

Though performance errors increase across all methods, SAMS maintains superior

comparative performance and stability. Even in the most challenging case where n is

reduced to 60 observations, we see from Table 2 that SAMS remains closer to the

oracle’s prediction error than any other method. Again, we notice that SAMS exhibits

remarkably low standard errors across all metrics.

4.3 Real data analysis

For real data, we look at the publicly available spambase data set from the University

of California at Irvine Machine Learning Repository. The data includes 56 email char-

acteristics that we pairwise interact to create 1,540 additional variables that potentially

predict spam. The 56 original characteristics are all numeric. They include: word fre-

quency, such as the number of times “free” appears in an email divided by total number

of words in the email; symbol frequency, such as the number of times “$” appears in an

email divided by the email’s total number of characters; or string attributes, such as the

longest run of capital letters in an email. After eliminating interactions that occur less

that 1% of the time in the data set, we are left with 1,253 total covariates. By using

interaction terms, we may discover that emails heavy in words such as “receive” only pre-

dict spam if symbols such as “000” also appear frequently. We might see this particular

combination crop up in spam about receiving cash rewards.

Spambase was previously examined by Hall et al. (2013) to explore simple tiered

18

SAMS Forward FoBa LARS Lasso Ada-Lasso Oracle

PE 18.23 18.25 18.28 40.53 40.82 22.37 18.08

(×10−2) (0.32) (0.33) (0.33) (1.27) (1.31) (0.65) (0.33)

L1-loss 35.6 36.06 36.14 235.36 227.74 75.01 38.97

(×10−2) (0.87) (0.92) (0.96) (7.62) (6.85) (4.45) (1.02)

n = 80 L2-loss 14.22 14.3 14.34 51.06 51.1 23.5 14.91

(×10−2) (0.38) (0.38) (0.39) (1.15) (1.14) (0.97) (0.38)

FP 0.07 0.13 0.12 41.38 39.54 4.48 0

(0.03) (0.04) (0.04) (1.50) (1.42) (0.46) (0)

FN-strong 0 0 0 0 0 0 0

(0) (0) (0) (0) (0) (0) (0)

FN-weak 3 3 3 2.79 2.79 2.97 0

(0) (0) (0) (0.04) (0.04) (0.02) (0)

PE 21.23 33.19 33.7 76.82 77.3 47.75 18.98

(×10−2) (2.18) (7.36) (7.36) (4.97) (4.93) (3.69) (0.36)

L1-loss 49.08 71.2 74.47 341.53 336.39 180 44.66

(×10−2) (5.28) (14.7) (16.92) (12.46) (11.83) (11.64) (1.14)

n = 60 L2-loss 18.83 24.32 24.81 76.7 76.8 51.18 17.46

(×10−2) (1.78) (3.46) (3.87) (2.8) (2.78) (2.9) (0.4)

FP 0.35 1.46 1.32 38.15 38.18 9.44 0

(0.17) (0.90) (0.85) (0.89) (0.96) (0.78) (0)

FN-strong 0.05 0.15 0.18 0.22 0.2 0.35 0

(0.04) (0.08) (0.09) (0.06) (0.05) (0.07) (0)

FN-weak 3 2.99 3 2.86 2.87 2.94 0

(0) (0.01) (0) (0.03) (0.04) (0.02) (0)

Table 1: SAMS’s performance against five competitors’ and the oracle procedure’s when

data are generated with Gaussian error. The table shows mean with standard error given

in parentheses.

19

SAMS Forward FoBa LARS Lasso Ada-Lasso Oracle

PE 29.42 41.61 42.81 90.23 89.24 61.01 24.88

(×10−2) (4.75) (7.77) (8.6) (5.48) (5.42) (4.67) (0.52)

L1-loss 53.95 88.33 79.17 356.7 348.8 199.79 51.46

(×10−2) (7.92) (19.7) (17.3) (13.35) (12.55) (13.04) (1.47)

L2-loss 20.94 27.85 27.1 81.6 81.56 57.26 19.98

(×10−2) (2.32) (3.84) (3.98) (3.07) (3.03) (3.32) (0.52)

FP 0.29 2.21 1.23 36.66 36.35 9.33 0

(0.10) (1.13) (0.80) (1.03) (1.01) (0.85) (0)

FN-strong 0.06 0.22 0.27 0.32 0.30 0.48 0

(0.05) (0.08) (0.11) (0.07) (0.06) (0.09) (0)

FN-weak 3 3 3 2.84 2.85 2.94 0

(0) (0) (0) (0.04) (0.04) (0.02) (0)

Table 2: SAMS’s performance against six methods’ on heavy-tailed data. Data is gener-

ated with random noise following a t-distribution with 10 degrees of freedom. We show

the case where n = 60.

classifiers. In that application, a subset of just five regressors was used. Considering

the limited number of features, the classifiers did well. For misclassification rate, the

proportion of wrongly classified emails, the simple tiered methods returned errors as low

as 13.3%. Here, however, we have the luxury of considering much richer information, so

we expect any reasonably good method to give a lower misclassification rate.

Because real data is especially noisy, we make a small modification to the implemen-

tation of SAMS. To increase the stability of SAMS in the face of noisy data, we add a

second tuning parameter. Since SAMS generates multiple sets of coefficients from when

it begins to when it terminates, we can specifically select the set of β̂ which yields the

lowest misclassification rate. The difference is that in the original procedure, for each

value of threshold τ , we take the estimate of β̂ as the last β̃ in the LARS solution path,

but here we may select an intermediate solution as β̂.

Real data also renders it too computationally and memory intensive to tune adaptive

Lasso for the best triplet (γ, ŵ, λn). Instead, we create the initial weights ŵ from the

tuned Lasso parameters and then tune the remaining pair of parameters (γ, λn).

To use the 4,601 emails in the data set, we split them into a one-fifth testing set,

20

SAMS Forward FoBa LARS Lasso Ada-Lasso

MCR 10.16 11.88 11.8 11.53 11.35 11.34

(0.11) (0.12) (0.13) (0.1) (0.11) (0.12)

Table 3: Predicting Spam. MCR stands for the misclassification rate. Values are reported

as percents. The table shows mean with standard error given in parentheses.

two-fifths validation set, and two-fifths training set. On the training set of 1,840 emails,

we generate candidate models using the methods described in the simulation section. We

predict that an email is spam if a model produces a value greater than 0.5 and not spam

otherwise. On the validation set, we choose tuning parameters to minimize misclassifi-

cation rate, and we measure the error on the testing set. We repeat the procedure on

100 random splits and average the results. The average misclassification rate is shown in

Table 3.

Table 3 shows that SAMS has the lowest misclassification rate at 10.16% and is

followed by adaptive Lasso, which has a misclassification slightly more than 1% higher.

SAMS produces a misclassification rate lower than the 13.3% found in Hall et al. (2013).

SAMS also exhibits the second lowest standard error, a slim 0.01% higher than the

standard error of LARS.

Particularly interesting in this application are the distinct email characteristics that

different methods believe indicate spam. SAMS tends to be very selective, and most of

its variables appear reasonable. Consistently in over 95% of the runs, SAMS indicates

that higher frequency of “$”, greater volumes of “000”, bigger font size, more of the word

“free”, and increased number of “!” indicate spam emails. SAMS is also more conservative

than other methods when selecting important interaction terms.

As a whole, the data indicates that, amongst these methods, SAMS does the best

job at achieving two desirable outcomes: correctly sorting email and selecting a set of

high-signal, stable spam indicators out of an overwhelming number of possibilities.

21

A Proofs of main results

A.1 Proof of Theorem 1

We prove the theorem conditioning on event E , which happens with probability at least

1− o(p−c1), as guaranteed by Condition 2. The key is to prove that conditioning on E1,

we have

‖β̂
λ
‖∞ < τ, (8)

for any λ ∈ [λmin,∞). Then the result in the theorem follows automatically.

We proceed to prove (8). For a given λ, a vector β̂
λ

= (β̂λ1 , · · · , βλp)T ∈ Rp is the

global minimizer of (2) if and only if the following KKT conditions are satisfied

− n−1xTj (y−Xβ̂
λ
) + λsgn(β̂λj) = 0, for j ∈ supp(β̂

λ
)

|xTj (y−Xβ̂
λ
)| ≤ λ, for j ∈ supp(β̂

λ
)c.

Since β0 = 0, the above conditions are equivalent to

− n−1xTj (ε−Xβ̂
λ
) + λsgn(β̂λj) = 0, for j ∈ supp(β̂

λ
) (9)

|xTj (ε−Xβ̂
λ
)| ≤ λ, for j ∈ supp(β̂

λ
)c. (10)

Thus, if λ ≥ c0
√

(log p)/n with c0 in (3), then the Lasso solution β̂
λ

= 0 conditioning on

the event E1. Therefore, the desired results hold for λ ∈ [c0
√

(log p)/n,∞).

Next we consider the range λ ∈ [λmin, c0
√

(log p)/n). We use the method of proof

by contradiction. Suppose that as λ decreases to some λ1 ∈ [λmin, c0
√

(log p)/n), there

exists a coordinate j1 such that the magnitude of the j1th coordinate of β̂
λ1

just increased

to τ . Then by the continuity of Lasso solution path, it is known that ‖β̂
λ1‖∞ ≤ τ . Let

A = supp(β̂
λ1

), i.e., the support of β̂
λ1

. Using matrix notation, the KKT condition (9)

can be rewritten as

n−1XT
AXAβ̂

λ1

A = n−1XT
Aε− λ1sgn(β̂

λ1

A). (11)

We first consider the left hand side of (11). Note that β̂
min

is the most dense solu-

tion; we have |A| ≤ ‖β̂
min
‖0 < κc. Thus, it follows from the definition of κc that

λmin(n−1XT
AXA) ≥ c2, which entails

‖n−1XT
AXAβ̂

λ1

A ‖2 ≥ λmin(n−1XT
AXA)‖β̂

λ1

A ‖2 ≥ c2‖β̂
λ1

A ‖2 ≥ c2τ. (12)

22

Now consider the right hand side of (11). On the event E1, by matrix calculus,

‖n−1XT
Aε− λ1sgn(β̂

λ1

A)‖2 ≤
√
|A|‖n−1XT

Aε− λ1sgn(β̂
λ1

A)‖∞ ≤ (c0
√

(log p)/n+ λ1)
√
|A|.

Combining this with (11) and in view of (12) we have

|A| ≥ c4τ 2(c0
√

(log p)/n+ λ1)
−2 ≥ c4τ 2n/(4c20 log p),

which contradicts the theorem assumption. This completes the proof of Theorem 1.

A.2 Proof of Proposition 1

The key is to prove that, conditioning on event E2 defined in Condition 3, the minimizer

β̂ of Ln(β;λ∗) defined in (2) satisfies

|β̂j| < τ, for j ∈ Sc0. (13)

Then the variable whose coefficient has magnitude reaching τ must be in the set S0, and

the desired result in Theorem 1 follows automatically.

To prove (13), we need to characterize β̂. We achieve this goal by constructing the

minimizer β̂ and comparing it with the population minimizer β∗ = β∗(β1, λ
∗), where β1

is some vector in Nδn(β0) to be introduced later, and λ∗ = λ∗(β1, τ) is defined in Section

3. We will first prove that the minimizer β̂ satisfies supp(β̂) ⊆ A∗ ≡ supp(β∗), and

moreover,

‖β̂ − β∗‖2 ≤
√
|Sc0 ∩ A∗|λ0/c2. (14)

Then with the above result (14), we can prove (13) using the method of proof by contra-

diction. Specifically, suppose (13) does not hold and for some j ∈ Sc0, |β̂j| ≥ τ . Then by

Condition 4, we have ‖β̂ − β∗‖2 ≥ |β̂j − β∗j | ≥ c2τ . This together with (14) entails that

|Sc0 ∩ A∗| ≥
(
cc2τ/λ0

)2
,

which contradicts Condition 4. Thus, (13) is proved and the result in the theorem follows

immediately.

It remains to prove (14). To this end, we first introduce β1. Note that the model

error ε can be decomposed into two parts, ε‖ = PS0ε and ε⊥ = (In −PS0)ε, where PS0

is the same as in (4). Thus, the regression model can be written as

y = XS0β0S0 + ε‖ + ε⊥ = XS0β1S0 + ε⊥, (15)

23

where β1S0 = β0S0 + (XT
S0XS0)

−1XT
S0ε. Let β1 be a vector with support S0 and on its

support it is the same as β1S0 . Then conditioning on event E2, β1 ∈ Nδn(β0).

Next we construct β̂ and show that it satisfies supp(β̂) ⊆ A∗ and (14) holds. Consider

the objective function

Qn(β;λ) = (2n)−1‖Xβ1 −Xβ‖22 + λ‖β‖1.

Then β∗ is the minimizer of Qn(β;λ∗). By (15) and the definition of β1,

Ln(β;λ) = (2n)−1‖X(β1 − β) + ε⊥‖22 + λ‖β‖1

= (2n)−1‖X(β1 − β)‖22 + λ‖β‖1 + (2n)−1‖ε⊥‖22 + n−1εT⊥X(β1 − β)

= Qn(β;λ)−
∑
j∈Sc0

ajβj + (2n)−1‖ε⊥‖22,

where aj = n−1εT⊥xj, and in the last step above we have used the decomposition X(β1−

β) = XS0(β1S0 − βS0) − XSc0βSc0 and εT⊥XS0 = 0. Denote by A∗ = supp(β∗). We first

study the minimizer β̂ when restricted to the subspace RA
∗

= {β = (β1, · · · , βp)T : βj =

0 for j /∈ A∗}. Let e = (e1, · · · , ep)T ∈ RA
∗

be a unit vector satisfying ‖e‖2 = 1. For

some 0 6= δ ∈ R, by a Taylor expansion and the fact that β∗A∗ minimizes Qn(β;λ∗) when

restricted to RA
∗
, we have

Ln(β∗ + δe;λ∗)− Ln(β∗;λ∗) = Qn(β∗ + δe;λ∗)−Qn(β∗;λ∗)− δ
∑

j∈Sc0∩A∗

ajej (16)

= δ2eT∇2Qn(β̃
∗
;λ∗)e− δ

∑
j∈Sc0∩A∗

ajej,

where β̃
∗

lies on the line segment connecting β∗ and β∗ + δe. Thus, it follows that

supp(β̃
∗
) ⊆ A∗. By Condition 4, we have λmin(n−1XT

A∗XA∗) ≥ c2. Hence,

λmin(∇2Qn(β̃
∗
;λ∗)) = λmin(n−1XT

A∗XA∗) ≥ c2. (17)

Since maxj∈Sc0 |aj| ≤ λ0 conditioning on E2, it follows from (16) and (17) that

Ln(β∗ + δe;λ∗)− Ln(β∗;λ∗) ≥ c2δ2 − δ
∑

j∈Sc0∩A∗

ajej ≥ c2δ2 − δ{
∑

j∈Sc0∩A∗

a2j}1/2

≥ c2δ2 − δλ0
√
|Sc0 ∩ A∗|.

Thus, Ln(β∗ + δej) − Ln(β∗;λ∗) > 0 for |δ| > λ0
√
|Sc0 ∩ A∗|/c2. This ensures that the

minimizer β̂A∗ of Ln(β;λ∗) restricted on RA
∗

satisfies

‖β̂A∗ − β∗A∗‖2 ≤
√
|Sc0 ∩ A∗|λ0/c2. (18)

24

Let A = supp(β̂A∗). Then we have A ⊆ A∗, and when restricted to RA
∗
, the estimator

β̂A will satisfy the following KKT conditions:

− n−1xTj XA∗(β1A∗ − β̂A∗) + λ∗sgn(β̂j)− aj1{j∈A∩Sc0} = 0, if j ∈ A, (19)

|n−1xTj XA∗(β1A∗ − β̂A∗) + aj1{j∈Ac∩Sc0}| ≤ λ∗, if j ∈ A∗ \ A. (20)

Now we construct the vector β̂ in such a way that its support is A and it takes value

β̂A on its support. We will show that β̂ constructed in this way is indeed the global

minimizer of Ln(β;λ∗) in the entire parameter space Rp. To this end, we only need to

prove

|n−1xTj X(β1 − β̂) + aj1{j∈Ac∩Sc0}| ≤ λ∗, if j ∈ A∗c. (21)

Then (19) – (21) together form the KKT conditions guaranteeing that β̂ defined above

is the global minimizer of Ln(β;λ∗).

It remains to prove (21). Conditioning on event E2, we have

max
j∈A∗c

|aj1{j∈Ac∩Sc0}| ≤ max
j∈Sc0
|aj| ≤ λ0. (22)

In addition, by the triangle inequality,

max
j∈A∗c

|n−1xTj X(β1 − β̂)| ≤ max
j∈A∗c

∣∣n−1xTj X(β1 − β∗)
∣∣+ max

j∈A∗c

∣∣n−1xTj X(β∗ − β̂)
∣∣. (23)

The first term on the right hand side above is deterministic and bounded by (1− c5)λ∗,

as assumed in Condition 6. For the second term on the right hand side, since A ⊂ A∗, it

follows from (14) and Condition 7 that

max
j∈A∗c

∣∣n−1xTj X(β∗ − β̂)
∣∣ ≤ n−1‖XT

A∗cXA∗‖∞,2‖β∗A∗ − β̂A∗‖2 = o(λ∗).

Combining the above results and in view of (22) and (23) we complete the proof of (21).

Hence we have proved that β̂ constructed above is a global minimizer of Ln(β;λ∗) and

satisfies (14). This completes the proof of the proposition.

A.3 Proof of Theorem 2

Note that for any given active set A $ S0, the model can be written as (7). So

we only need to prove that under Condition 8 and the extra distribution assumption

ε ∼ N(0, σ2In), Conditions 2–3 hold under the new model setting (7) with asymptotic

probability one. Then using a similar idea to the proof of Proposition 1, we can prove

25

that the desired results in Theorem 2 hold. In the proof below, we use C to denote some

generic positive constant.

It remains to prove that, with asymptotic probability one, the following events hold:

Ẽ1 = {n−1‖XT
Ac ε̃‖∞ ≤ C

√
(log p)/n}

Ẽ2 = {‖(XT
A1

XA1)
−1XT

A1
ε̃‖∞ ≤ C

√
(log n)/n, n−1‖XT

Sc0
(In −PA1)ε̃‖∞ ≤ C

√
(log p)/n}.

We first consider event Ẽ1. By definition of ε̃ we have

n−1XT
Ac ε̃ = A1 + A2,

where A1 = n−1XT
Ac(In − PA)ε and A2 = n−1XT

Ac(In − PA1)(In − PA)XA1β0,A1
. Since

ε ∼ N(0, σ2In), it follows that A1 = n−1XT
Ac(In−PA)ε ∼ N(0, n−2σ2XT

Ac(In−PA)XAc).

In addition, since each column of X is standardized to have L2-norm
√
n, we obtain that

each entry of random vector A1 has a normal distribution with variance bounded from

above by σ2/n. Thus, using classical Gaussian tail probability bounds we can prove that

P
(
‖A1‖∞ > C

√
(log p)/n

)
≤ |Ac|P (|Z| > C

√
(log p)) ≤ Cp exp(−C log p)/

√
log p = o(p−C),

where Z is a standard normal random variable. Thus, with probability at least 1−o(p−C),

the vector A1 satisfies ‖A1‖∞ ≤ C
√

(log p)/n where C is some generic positive constant.

Moreover, since Ac = A1∪Sc0 and XT
A1

(In−PA1) = 0, by Condition 8, we have ‖A2‖∞ =

‖n−1XT
Ac(In−PA1)(In−PA)XA1β0,A1

‖∞ = ‖n−1XT
Sc0

(In−PA1)(In−PA)XA1β0,A1
‖∞ ≤

c6
√

(log p)/n. Combining these results entails that with probability at least 1−O(p−C),

event Ẽ1 holds.

Next we consider event Ẽ2. By the definition of ε̃ we have

(XT
A1

XA1)
−1XT

A1
ε̃ = B1 +B2,

where B1 = (XT
A1

XA1)
−1XT

A1
(In − P A)ε and B2 = (XT

A1
XA1)

−1XT
A1

(In − PA1)(In −

PA)XA1β0,A1
. Since ε ∼ N(0, σ2I), it follows that B1 ∼ N(0, σ2(XT

A1
XA1)

−1XT
A1

(In −

P A)XA1(X
T
A1

XA1)
−1). In addition, since In −PA is also a projection matrix, we obtain

that each entry of the vectorB1 has variance bounded from above by the largest eigenvalue

of σ2(XT
A1

XA1)
−1, which can be further bounded from above by c−2σ2 since the model

size |A1| < |S0| < κc. Thus,

P (‖B1‖∞ > C
√

(log n)/n) ≤ |A1|P (|Z| > C
√

(log n)) ≤ n exp(−C log n)/
√

log n = o(n−C),

26

where Z is a standard normal random variable. The above result ensures that ‖B1‖∞ ≤

C
√

(log n)/n with probability at least 1 − o(n−C) with C > 0 some generic constant.

Since XT
A1

(In −PA1) = 0, it follows that B2 = 0. Combining these results yields

‖(XT
A1

XA1)
−1XT

A1
ε̃‖∞ ≤ C

√
(log n)/n (24)

with probability at least 1− o(n−C).

Next we consider XT
Sc0

(In −PA1)ε̃. By the definition of ε̃ we have

n−1XT
Sc0

(In −PA1)ε̃ = D1 +D2,

where D1 = n−1XT
Sc0

(In−PA1)(In−PA)ε and D2 = n−1XT
Sc0

(In−PA1)(In−PA)XA1β0,A1
.

Using similar arguments as above we can prove that with probability at least 1−O(p−C),

the vector D1 satisfies ‖D1‖∞ ≤ C
√

(log p)/n. This together with Condition 8 entails

‖n−1XT
Sc0

(In −PA1)ε̃‖∞ ≤ C
√

(log p)/n (25)

with probability at least 1− o(p−C).

Combining the above results (24) and (25) we can prove that with probability at least

1− o(n−C), the event Ẽ2 holds. This completes the proof.

B Technical details for Conditions 2 and 3

The probability bound in Condition 2 has been shown by Fan and Lv (2013) to hold for

a wide class of error distributions under mild conditions of design matrix. So we only

consider the probability bound in Condition 3.

Write bj = XS0(X
T
S0XS0)

−1ej for j ∈ S0 and dj = (In −PS0)XSc0ej for j ∈ Sc0, where

ej is the vector with jth component 1 and all other components 0. Then

‖(XT
S0XS0)

−1XT
S0ε‖∞ = max

j∈S0
|bTj ε|, ‖XT

Sc0
(In −PS0)ε‖∞ = max

j∈Sc0
|dTj ε|.

Applying the Bonferroni inequality gives

P
(
‖(XT

S0XS0)
−1XT

S0ε‖∞ > c2
√

(log n)/n
)
≤
∑
j∈S0

P
(
|bTj ε| > c2

√
(log n)/n

)
, (26)

P
(
n−1‖XT

S0(In −PS0)ε‖∞ > λ0
)
≤
∑
j∈Sc0

P
(
n−1|dTj ε| > λ0

)
. (27)

27

Thus, the problem reduces to studying the deviation bounds of random variables bTj ε

and dTj ε. We consider two classes of error distributions.

Case 1 (Bounded error): If the errors εi, i = 1, · · · , n all have magnitude bounded by

some constant M > 0, then by Hoeffding’s inequality (Hoeffding, 1963),

P
(
|bTj ε| > c2

√
(log n)/n

)
≤ 2 exp

(
− c22 log n

2M2‖bj‖22n

)
.

Note that since the true model size |S0| < κc, it follows that ‖bj‖22 = eTj (XT
S0XS0)

−1ej ≤

c−2n−1. Therefore, the above inequality can be further bounded as

P (|bTj ε| > c2
√

(log n)/n) ≤ 2 exp
(
− c22c

2 log n

2M2

)
.

This together with (26) entails that for some constant c3 ∈ (0, c22c
2/(2M2)),

P
(
‖(XT

S0XS0)
−1XT

S0ε‖∞ > c2
√

(log n)/n
)
≤ o(n−c3). (28)

Now we consider P (n−1|dTj ε| > λ0). Using similar arguments and noting that ‖dj‖22 =

eTj XT
Sc0

(In −PS0)XSc0ej ≤ eTj XT
Sc0

XSc0ej = n for each j ∈ Sc0, we obtain that

P (n−1|dTj ε| > λ0) ≤ 2 exp
(
− c20 log p

2M2

)
= O(p−c

2
0/(2M

2)).

This together with (27) ensures that

P
(
n−1 max

j∈Sc0
|dTj ε| > λ0

)
≤ O(p−c

2
0/(2M

2)+1). (29)

Combining (28) with (29) proves

P (Ec2) ≤ P
(

max
j∈S0
|bTj ε| > c2

√
(log n)/n

)
+ P

(
n−1 max

j∈Sc0
|dTj ε| > λ0

)
≤ o(n−c3),

for c0 large enough. This completes the proof.

Case 2 (light-tailed error): Assume there exist constants M, ν0 ∈ (0,∞) such that

E
(

exp(εi/M)− 1− εi
M

)
M2 ≤ ν20/2,

uniformly over all i = 1, · · · , n. Then by Proposition 4 in Fan and Lv (2011) we have

P (|bTj ε| > c2
√

(log n)/n) ≤ 2 exp
(
− 1

2

c22 log n

ν0/c2 + ‖bj‖∞M
√
n log n

)
,

for each j ∈ S0. The above probability bound becomes O(n
− c22

2(ν0/c
2+d)) for some constant

d > 0 if we further assume that the maximum absolute element of matrix XS0(X
T
S0XS0)

−1

28

is bounded by d/(M
√
n log n). Note that in the orthogonal design case, XS0(X

T
S0XS0)

−1 =

n−1XS0 and this additional assumption is very mild.

Similarly, we can show that

P (n−1|dTj ε| > λ0) ≤ 2 exp
(
− 1

2

c20 log p

ν20 + ‖dj‖∞Mλ0

)
.

Therefore, if the maximum absolute element of matrix (In − PS0)XSc0 is bounded by

d̃M−1c−10

√
n/(log p) with d̃ > 0 some constant, then the above inequality has upper

bound of the order O(p−c
2
0/(2(ν

2
0+d̃))).

Therefore, using similar arguments to those in case 1 we can show that for c0 > 0

large enough, P (Ec2) ≤ o(n−c7) with c7 > 0 some constant. This completes the proof.

References

Barron, A. R., Cohen, A., Wolfgang, D. and DeVore, R. A. (2008). Approxi-

mation and learning by greedy algorithms. Ann. Statist. 36, 64–94

Bickel, P., Ritov, Y. and Tsybakov, A. (2009). Simultaneous analysis of lasso and

dantzig selector. Ann. Statist. 37, 1705–32

Bühlmann, P. (2012). Statistical significance in high-dimensional linear models.

Bernoulli 19, 1212-42.

Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data:

methods, theory and applications. Heidelberg; New York: Springer.

Donoho, D. L. and Stodden, V. (2006). Breakdown point of model selection when

the number of variables exceeds the number of observations. Proceedings of the Inter-

national Joint Conference on Neural Networks 2006, 1916–21.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle

regression. Ann. Statist. 32, 407–99

Fan, J. and Lv, J. (2011). Nonconcave penalized likelihood with NP-dimensionality.

IEEE Transactions on Information Theory. 57, 5467–84.

Fan, Y. and Lv, J. (2013). Asymptotic equivalence of regularization methods in thresh-

olded parameter space. J. Am. Statist. Assoc. 108, 1044–61.

29

Hall, P., Xia, Y. and Xue, J.-H. (2013). Simple tiered classifiers. Biometrika 100,

431–45.

Hoeffding, W. (1963). Probability Inequalities for Sums of Bounded Random Vari-

ables. J. Am. Statist. Assoc., 58, 13–30.

Ing, C-K. and Lai, T. L. (2011). A stepwise regression method and consistent model

selection for high-dimensional sparse linear models. Statist. Sinica. 21, 1473–513.

Li, Ping (2009). ABC-Boost: Adaptive base class boost for multi-class classification.

Proceedings of the 26th Annual International Conference on Machine Learning 2009,

529–36.

Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2013). A

significance test for the lasso (with discussion). Ann. Statist., to appear.

Meinshausen, N. and Bühlmann, P. (2010). Stability selection. J. R. Statist. Soc. B

72(4), 417–73.

Minnier, J., Tian, L. and Cai, T. (2011). A perturbation method for inference on

regularized regression estimates. J. Am. Statist. Assoc. 106, 1371–82.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist.

Soc. B 58, 267–88.

Tropp, J. A. (2004). Greed is good: algorithmic results for sparse approximation. IEEE

Trans. Inf. Theory 50, 2231–42.

van de Geer, S., Bühlmann, P., and Zhou, S.(2011). The adaptive and the thresh-

olded lasso for potentially misspecified models (and a lower bound for the lasso). Elec-

tron. J. Stat. 5, 688749.

Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. J.

Am. Statist. Assoc. 104, 1512–24.

Wasserman, L. and Roeder, K. (2009). High dimensional variable selection. Ann.

Statist. 37, 2178–201.

30

Yuan, M. and Zou, H.(2009). Efficient global approximation of generalized nonlinear

l1-regularized solution paths and its applications. J. Am. Statist. Assoc. 104, 1562–74.

Zhang, C-H. and Zhang, S. (2013). Confidence intervals for low dimensional param-

eters in high dimensional linear models. J. R. Statist. Soc. B 76, 217–42.

Zhang, T. (2008). Adaptive forward-backward greedy algorithm for sparse learning with

linear models. NIPS 2008.

Zhong, W., Zhang, T., Zhu, Y., and Liu, J. (2013). Correlation pursuit: forward

stepwise variable selection for index models. J. R. Statist. Soc. B 74, 849–70.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc.

101, 1418–29.

Zou, H. and Zhang, H. (2009). On the adaptive elastic-net with a diverging number

of parameters. Ann. Statist. 37, 1733–51.

31

	Introduction
	Stable Adaptive Model Selection
	SAMS algorithm and a broad overview
	An example using stable adaptive model selection
	How to choose and interpret the threshold

	Theoretical properties
	Numeric Studies
	Implementation
	Simulation
	Settings
	Robust performance under normal errors
	Impact of heavy-tailed errors on accuracy and stability

	Real data analysis

	Proofs of main results
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2

	 Technical details for Conditions 2 and 3

